Kim J, Menichella B, Lee H, Dayton PA, and Pinton GF
Sensors (Basel, Switzerland) [Sensors (Basel)] 2022 Dec 28; Vol. 23 (1). Date of Electronic Publication: 2022 Dec 28.
Subjects
Equipment Design, Transducers, Printing, Three-Dimensional, Ultrasonography, Ultrasonics, and Ultrasonic Therapy
Abstract
We present a rapid prototyping method for sub-megahertz single-element piezoelectric transducers by using 3D-printed components. In most of the early research phases of applying new sonication ideas, the prototyping quickness is prioritized over the final packaging quality, since the quickness of preliminary demonstration is crucial for promptly determining specific aims and feasible research approaches. We aim to develop a rapid prototyping method for functional ultrasonic transducers to overcome the current long lead time (>a few weeks). Here, we used 3D-printed external housing parts considering a single matching layer and either air backing or epoxy-composite backing (acoustic impedance > 5 MRayl). By molding a single matching layer on the top surface of a piezoceramic in a 3D-printed housing, an entire packaging time was significantly reduced (<26 h) compared to the conventional methods with grinding, stacking, and bonding. We demonstrated this prototyping method for 590-kHz single-element, rectangular-aperture transducers for moderate pressure amplitudes (mechanical index > 1) at focus with temporal pulse controllability (maximum amplitude by <5-cycle burst). We adopted an air-backing design (Type A) for efficient pressure outputs, and bandwidth improvement was tested by a tungsten-composite-backing (Type B) design. The acoustic characterization results showed that the type A prototype provided 3.3 kPa/V pp far-field transmitting sensitivity with 25.3% fractional bandwidth whereas the type B transducer showed 2.1 kPa/V pp transmitting sensitivity with 43.3% fractional bandwidth. As this method provided discernable quickness and cost efficiency, this detailed rapid prototyping guideline can be useful for early-phase sonication projects, such as multi-element therapeutic ultrasound array and micro/nanomedicine testing benchtop device prototyping.
Kwan YH, Ong ZQ, Choo DYX, Phang JK, Yoon S, and Low LL
Patient preference and adherence [Patient Prefer Adherence] 2023 Jan 05; Vol. 17, pp. 1-11. Date of Electronic Publication: 2023 Jan 05 (Print Publication: 2023).
Full-mouth rehabilitation can be challenging due to the complexity of restoring the vertical dimension of occlusion (VDO) and replacing missing teeth. In partially edentulous patients, the concept of a bonded composite resin prototype for increasing the VDO has previously been applied through the use of an overlay removable partial denture (RPD) with acrylic resin covering the existing dentition. Unfortunately, this type of prosthesis does not always accurately model the function and phonetics intended for the definitive prostheses, and the esthetic result often is less than ideal. It would be advantageous if direct bonding could be used with the patient's existing RPD to model the increased VDO, but this approach has not been reported in the literature. This case report describes the direct bonding of an existing RPD to create a prototype for increased VDO in a partially edentulous patient with a skeletal Class II malocclusion. The successful outcome has been maintained for more than 1 year. Competing Interests: No conflicts of interest reported.
Zhang X, Son R, Lin YJ, Gill A, Chen S, Qi T, Choi D, Wen J, Lu Y, Lin NYC, and Chiou PY
Lab on a chip [Lab Chip] 2022 Nov 08; Vol. 22 (22), pp. 4327-4334. Date of Electronic Publication: 2022 Nov 08.
Subjects
Acoustics and Lasers
Abstract
Acoustic patterning of micro-particles has many important biomedical applications. However, fabrication of such microdevices is costly and labor-intensive. Among conventional fabrication methods, photo-lithography provides high resolution but is expensive and time consuming, and not ideal for rapid prototyping and testing for academic applications. In this work, we demonstrate a highly efficient method for rapid prototyping of acoustic patterning devices using laser manufacturing. With this method we can fabricate a newly designed functional acoustic device in 4 hours. The acoustic devices fabricated using this method can achieve sub-wavelength, complex and non-periodic patterning of microparticles and biological objects with a spatial resolution of 60 μm across a large active manipulation area of 10 × 10 mm 2 .
Mashayekh S, Stunkard LM, Kienle M, Mathews II, and Khosla C
Biochemistry [Biochemistry] 2022 Nov 01; Vol. 61 (21), pp. 2261-2266. Date of Electronic Publication: 2022 Oct 03.
Subjects
Humans, Uridine, Pyrimidine Nucleotides, and Uridine Kinase antagonists inhibitors
Abstract
Pyrimidine nucleotide biosynthesis in humans is a promising chemotherapeutic target for infectious diseases caused by RNA viruses. Because mammalian cells derive pyrimidine ribonucleotides through a combination of de novo biosynthesis and salvage, combined inhibition of dihydroorotate dehydrogenase (DHODH; the first committed step in de novo pyrimidine nucleotide biosynthesis) and uridine/cytidine kinase 2 (UCK2; the first step in salvage of exogenous nucleosides) strongly attenuates viral replication in infected cells. However, while several pharmacologically promising inhibitors of human DHODH are known, to date there are no reports of medicinally viable leads against UCK2. Here, we use structure-based drug prototyping to identify two classes of promising leads that noncompetitively inhibit UCK2 activity. In the process, we have identified a hitherto unknown allosteric site at the intersubunit interface of this homotetrameric enzyme. By reducing the k cat of human UCK2 without altering its K M , these new inhibitors have the potential to enable systematic dialing of the fractional inhibition of pyrimidine salvage to achieve the desired antiviral effect with minimal host toxicity.
IEEE transactions on visualization and computer graphics [IEEE Trans Vis Comput Graph] 2022 Nov; Vol. 28 (11), pp. 3618-3628. Date of Electronic Publication: 2022 Oct 21.
In this paper we examine the task of key gesture spotting: accurate and timely online recognition of hand gestures. We specifically seek to address two key challenges faced by developers when integrating key gesture spotting functionality into their applications. These are: i) achieving high accuracy and zero or negative activation lag with single-time activation; and ii) avoiding the requirement for deep domain expertise in machine learning. We address the first challenge by proposing a key gesture spotting architecture consisting of a novel gesture classifier model and a novel single-time activation algorithm. This key gesture spotting architecture was evaluated on four separate hand skeleton gesture datasets, and achieved high recognition accuracy with early detection. We address the second challenge by encapsulating different data processing and augmentation strategies, as well as the proposed key gesture spotting architecture, into a graphical user interface and an application programming interface. Two user studies demonstrate that developers are able to efficiently construct custom recognizers using both the graphical user interface and the application programming interface.
De Santis M, Sorbelli D, Vallet V, Gomes ASP, Storchi L, and Belpassi L
Journal of chemical theory and computation [J Chem Theory Comput] 2022 Oct 11; Vol. 18 (10), pp. 5992-6009. Date of Electronic Publication: 2022 Sep 29.
Subjects
Gold and Water chemistry
Abstract
Frozen density embedding (FDE) represents an embedding scheme in which environmental effects are included from first-principles calculations by considering the surrounding system explicitly by means of its electron density. In the present paper, we extend the full four-component relativistic Dirac-Kohn-Sham (DKS) method, as implemented in the BERTHA code, to include environmental and confinement effects with the FDE scheme (DKS-in-DFT FDE). The implementation, based on the auxiliary density fitting techniques, has been enormously facilitated by BERTHA's python API (PyBERTHA), which facilitates the interoperability with other FDE implementations available through the PyADF framework. The accuracy and numerical stability of this new implementation, also using different auxiliary fitting basis sets, has been demonstrated on the simple NH 3 -H 2 O system, in comparison with a reference nonrelativistic implementation. The computational performance has been evaluated on a series of gold clusters (Au n , with n = 2, 4, 8) embedded into an increasing number of water molecules (5, 10, 20, 40, and 80 water molecules). We found that the procedure scales approximately linearly both with the size of the frozen surrounding environment (consistent with the underpinnings of the FDE approach) and with the size of the active system (in line with the use of density fitting). Finally, we applied the code to a series of heavy (Rn) and super-heavy elements (Cn, Fl, Og) embedded in a C 60 cage to explore the confinement effect induced by C 60 on their electronic structure. We compare the results from our simulations, with respect to more-approximate models employed in the atomic physics literature. Our results indicate that the specific interactions described by FDE are able to improve upon the cruder approximations currently employed, and, thus, they provide a basis from which to generate more-realistic radial potentials for confined atoms.
Soft robotics [Soft Robot] 2022 Oct; Vol. 9 (5), pp. 907-925. Date of Electronic Publication: 2022 Jan 07.
Subjects
Equipment Design, Motion, and Robotics methods
Abstract
Designs of soft actuators are mostly guided and limited to certain target functionalities. This article presents a novel programmable design for soft pneumatic bellows-shaped actuators with distinct motions, thus a wide range of functionalities can be engendered through tuning channel parameters. According to the design principle, a kinematic model is established for motion prediction, and a sampling-based optimal parameter search is executed for automatic design. The proposed design method and kinematic models provide a tool for the generation of an optimal channel curve, with respect to target functions and required motion trajectories. Quantitative characterizations on the analytical model are conducted. To validate the functionalities, we generate three types of actuators to cover a wide range of motions in manipulation and locomotion tasks. Comparisons of model prediction on motion trajectory and prototype performance indicate the efficacy of the forward kinematics, and two task-based optimal designs for manipulation scenarios validate the effectiveness of the design parameter search. Prototyped by additive manufacturing technique with soft matter, multifunctional robots in case studies have been demonstrated, suggesting adaptability of the structure and convenience of the soft actuator's automatic design in both manipulation and locomotion. Results show that the novel design method together with the kinematic model paves a way for designing function-oriented actuators in an automatic flow.