articles+ search results
5,381 articles+ results
1 - 10
Next
Number of results to display per page
1. Iterative prototyping based on lessons learned from the falloposcope in vivo pilot study experience. [2023]
-
Rocha AD, Drake WK, Rice PF, Long DJ, Shir H, Walton RHM, Reed MN, Galvez D, Gorman T, Heusinkveld JM, and Barton JK
Journal of biomedical optics [J Biomed Opt] 2023 Dec; Vol. 28 (12), pp. 121206. Date of Electronic Publication: 2023 Aug 12.
- Subjects
-
Female, Humans, Pilot Projects, Endoscopes, Fallopian Tubes, Ovarian Neoplasms diagnostic imaging, and Ovarian Neoplasms pathology
- Abstract
-
Significance: High grade serous ovarian cancer is the most deadly gynecological cancer, and it is now believed that most cases originate in the fallopian tubes (FTs). Early detection of ovarian cancer could double the 5-year survival rate compared with late-stage diagnosis. Autofluorescence imaging can detect serous-origin precancerous and cancerous lesions in ex vivo FT and ovaries with good sensitivity and specificity. Multispectral fluorescence imaging (MFI) can differentiate healthy, benign, and malignant ovarian and FT tissues. Optical coherence tomography (OCT) reveals subsurface microstructural information and can distinguish normal and cancerous structure in ovaries and FTs.
Aim: We developed an FT endoscope, the falloposcope, as a method for detecting ovarian cancer with MFI and OCT. The falloposcope clinical prototype was tested in a pilot study with 12 volunteers to date to evaluate the safety and feasibility of FT imaging prior to standard of care salpingectomy in normal-risk volunteers. In this manuscript, we describe the multiple modifications made to the falloposcope to enhance robustness, usability, and image quality based on lessons learned in the clinical setting.
Approach: The ∼ 0.8 mm diameter falloposcope was introduced via a minimally invasive approach through a commercially available hysteroscope and introducing a catheter. A navigation video, MFI, and OCT of human FTs were obtained. Feedback from stakeholders on image quality and procedural difficulty was obtained.
Results: The falloposcope successfully obtained images in vivo . Considerable feedback was obtained, motivating iterative improvements, including accommodating the operating room environment, modifying the hysteroscope accessories, decreasing endoscope fragility and fiber breaks, optimizing software, improving fiber bundle images, decreasing gradient-index lens stray light, optimizing the proximal imaging system, and improving the illumination.
Conclusions: The initial clinical prototype falloposcope was able to image the FTs, and iterative prototyping has increased its robustness, functionality, and ease of use for future trials.
(© 2023 The Authors.)
- Full text View on content provider's site
-
Yilmaz-Aykut D, Torkay G, Kasgoz A, Shin SR, Bal-Ozturk A, and Deligoz H
Journal of biomedical materials research. Part B, Applied biomaterials [J Biomed Mater Res B Appl Biomater] 2023 Nov; Vol. 111 (11), pp. 1921-1937. Date of Electronic Publication: 2023 Jun 23.
- Subjects
-
Carrageenan pharmacology, Carrageenan chemistry, Wound Healing, Biocompatible Materials chemistry, Hydrogels pharmacology, Hydrogels chemistry, Gelatin pharmacology, and Gelatin chemistry
- Abstract
-
Injectable hydrogels based on natural polymers have shown great potential for various tissue engineering applications, such as wound healing. However, poor mechanical properties and weak self-healing ability are still major challenges. In this work, we introduce a host-guest (HG) supramolecular interaction between acrylate-β-cyclodextrin (Ac-β-CD) conjugated on methacrylated kappa-carrageenan (MA-κ-CA) and aromatic residues on gelatin to provide self-healing characteristics. We synthesize an MA-κ-CA to conjugate Ac-β-CD and fabricate dual crosslinked hybrid hydrogels with gelatin to mimic the native extracellular matrix (ECM). The dual crosslinking occurs on the MA-κ-CA backbone through the addition of KCl and photocrosslinking process, which enhances mechanical strength and stability. The hybrid hydrogels exhibit shear-thinning, self-healing, and injectable behavior, which apply easily under a minimally invasive manner and contribute to shear stress during the injection. In-vitro studies indicate enhanced cell viability. Furthermore, scratch assays are performed to examine cell migration and cell-cell interaction. It is envisioned that the combination of self-healing and injectable dual crosslinked hybrid hydrogels with HG interactions display a promising and functional biomaterial platform for wound healing applications.
(© 2023 Wiley Periodicals LLC.)
- Full text View on content provider's site
3. Biosensors in microalgae: A roadmap for new opportunities in synthetic biology and biotechnology. [2023]
-
Patwari P, Pruckner F, and Fabris M
Biotechnology advances [Biotechnol Adv] 2023 Nov; Vol. 68, pp. 108221. Date of Electronic Publication: 2023 Jul 24.
- Subjects
-
Synthetic Biology, Biotechnology, Bioengineering, Microalgae genetics, Microalgae metabolism, and Biosensing Techniques
- Abstract
-
Biosensors are powerful tools to investigate, phenotype, improve and prototype microbial strains, both in fundamental research and in industrial contexts. Genetic and biotechnological developments now allow the implementation of synthetic biology approaches to novel different classes of microbial hosts, for example photosynthetic microalgae, which offer unique opportunities. To date, biosensors have not yet been implemented in phototrophic eukaryotic microorganisms, leaving great potential for novel biological and technological advancements untapped. Here, starting from selected biosensor technologies that have successfully been implemented in heterotrophic organisms, we project and define a roadmap on how these could be applied to microalgae research. We highlight novel opportunities for the development of new biosensors, identify critical challenges, and finally provide a perspective on the impact of their eventual implementation to tackle research questions and bioengineering strategies. From studying metabolism at the single-cell level to genome-wide screen approaches, and assisted laboratory evolution experiments, biosensors will greatly impact the pace of progress in understanding and engineering microalgal metabolism. We envision how this could further advance the possibilities for unraveling their ecological role, evolutionary history and accelerate their domestication, to further drive them as resource-efficient production hosts.
Competing Interests: Declaration of Competing Interest The authors declare no conflicts of interest.
(Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Full text View on content provider's site
-
Suárez Peña S, Willson V, Alonso A, Caracciolo N, Boeykens S, and Piol MN
Journal of environmental management [J Environ Manage] 2023 Oct 15; Vol. 344, pp. 118630. Date of Electronic Publication: 2023 Jul 26.
- Subjects
-
Water Quality
- Abstract
-
An implementation proposal that seeks to globalize the scope of the sustainable technologies developed in the University laboratories is presented. This approach uses the generation of triple-impact projects placing people at the center of technological development to bring technical and scientific knowledge into a service design oriented to global sustainable solutions. This research is an approach to what a hub for scientific research, technological implementation, and human needs would look like by designing common environments in which to interact and expand knowledge in an iterated way through the experience of all the actors involved in technological implementation. As a control case, a new technology developed at the Universidad de Buenos Aires, consisting of using sustainable materials as tubular reactor fillers for water treatment was chosen. Based on data obtained within the framework of a University extension project, in which the water quality diagnosis for human consumption was carried out and cross-examined with the mathematical analysis of sorption, design parameters of the reactor, participatory design, and open source concepts application, different virtual environments were generated with distinct objectives: i) open design environment: publishing and mapping of installed sorption reactors, reactor model plans, and useful information related to drinking water quality (aimed at contributors of the open source design environment); ii) platform for academic actors linking: connecting data between prototyping lab for participatory design of sorption reactors (aimed at university research users); iii) information disclosure page: space where the implemented technology impact is displayed and shows options to contact researchers and request a reactor design diagnosis for another community (aimed at beneficiary users). A technological service designed to link the University with the community was proposed, by resolving one of the main gaps related to the possibility for communities to access public financing for self-managed improvement projects, increasing the appropriation of the adopted technology and democratizing public investment, making it sustainable over time.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Full text View on content provider's site
-
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, and Bae SH
Nanoscale horizons [Nanoscale Horiz] 2023 Sep 26; Vol. 8 (10), pp. 1345-1365. Date of Electronic Publication: 2023 Sep 26.
- Abstract
-
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
- Full text View on content provider's site
-
Rashwan O, Koroneos Z, Townsend TG, Caputo MP, Bylone RJ Jr, Wodrig B, and Cantor K
Scientific reports [Sci Rep] 2023 Sep 25; Vol. 13 (1), pp. 16041. Date of Electronic Publication: 2023 Sep 25.
- Abstract
-
The continuous growth of annual production and consumption of polyethylene terephthalate (PET) is coined with increasing waste that leaks into the environment, landfills and oceans as microplastics and nano plastics fragments. Upcycling the recycled PET to make a feedstock for the fast-growing material-extrusion additive manufacturing (MEX-AM) technology can contribute to the solution and supports the concept of sustainable materials. In this work, extrudable filaments comprising recycled polyethylene terephthalate (rPET) with low-cost additives, such as pyromellitic dianhydride (PMDA) as a chain extender, styrene-ethylene-butylene-styrene terpolymer functionalized with maleic anhydride (SEBS-g-MA), a thermal modifier and toughening agent, ethylene-ethyl acrylate-glycidyl methacrylate terpolymer (E-EA-GMA), a functional reactive elastomeric impact modifier and ethylene-ethyl-acrylate (EEA), a non-reactive elastomeric impact modifier, have been fabricated using the twin-screw extruder. The optimum extrusion process parameters for producing uniform filaments of different rPET compounded formulations have been identified, this includes the extrusion die temperature of 280 °C and the screw speed of 150 ± 3 rpm. The compounded filaments are then printed into standard ASTM test specimens for thermal characterization and mechanical characterization, including glass transition and melting temperatures, crystallinity and crystallization temperature, tensile strength, tensile modulus, ductility, flexural strength, and Izod impact energy. Furthermore, the melt flow index for the filaments was measured. More significantly, the experimental data showed that compounding rPET with such additives in the reactive twin-screw extrusion process results in uniform filaments that display advantageous thermal and mechanical properties and can be used as a feedstock in the MEX-AM technology. This study suggests that compounding the recycled PET pellets with low-cost additives while extruding them into filaments for MEX-AM offers excellent potential to make high-value-added customized products from a sustainable polymer feedstock, such as prototyping, tooling, testing components or end-use internal components for small machines and cars.
(© 2023. Springer Nature Limited.)
- Full text View on content provider's site
-
Kawakita S, Li S, Nguyen HT, Maity S, Haghniaz R, Bahari J, Yu N, Mandal K, Bandaru P, Mou L, Ermis M, Khalil E, Khosravi S, Peirsman A, Nasiri R, Adachi A, Nakayama A, Bell R, Zhu Y, Jucaud V, Dokmeci MR, and Khademhosseini A
Biomedical microdevices [Biomed Microdevices] 2023 Sep 23; Vol. 25 (4), pp. 37. Date of Electronic Publication: 2023 Sep 23.
- Subjects
-
Electric Impedance, Carbon, Electrodes, Microphysiological Systems, and Polymethyl Methacrylate
- Abstract
-
Trans-endothelial electrical resistance (TEER) is one of the most widely used indicators to quantify the barrier integrity of endothelial layers. Over the last decade, the integration of TEER sensors into organ-on-a-chip (OOC) platforms has gained increasing interest for its efficient and effective measurement of TEER in OOCs. To date, microfabricated electrodes or direct insertion of wires has been used to integrate TEER sensors into OOCs, with each method having advantages and disadvantages. In this study, we developed a TEER-SPE chip consisting of carbon-based screen-printed electrodes (SPEs) embedded in a poly(methyl methacrylate) (PMMA)-based multi-layered microfluidic device with a porous poly(ethylene terephthalate) membrane in-between. As proof of concept, we demonstrated the successful cultures of hCMEC/D3 cells and the formation of confluent monolayers in the TEER-SPE chip and obtained TEER measurements for 4 days. Additionally, the TEER-SPE chip could detect changes in the barrier integrity due to shear stress or an inflammatory cytokine (i.e., tumor necrosis factor-α). The novel approach enables a low-cost and facile fabrication of carbon-based SPEs on PMMA substrates and the subsequent assembly of PMMA layers for rapid prototyping. Being cost-effective and cleanroom-free, our method lowers the existing logistical and technical barriers presenting itself as another step forward to the broader adoption of OOCs with TEER measurement capability.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Full text View on content provider's site
-
Vanderlaan EL, Sexton J, Evans-Molina C, Buganza Tepole A, and Voytik-Harbin SL
Lab on a chip [Lab Chip] 2023 Sep 22. Date of Electronic Publication: 2023 Sep 22.
- Abstract
-
The protection and interrogation of pancreatic β-cell health and function ex vivo is a fundamental aspect of diabetes research, including mechanistic studies, evaluation of β-cell health modulators, and development and quality control of replacement β-cell populations. However, present-day islet culture formats, including traditional suspension culture as well as many recently developed microfluidic devices, suspend islets in a liquid microenvironment, disrupting mechanochemical signaling normally found in vivo and limiting β-cell viability and function in vitro . Herein, we present a novel three-dimensional (3D) microphysiological system (MPS) to extend islet health and function ex vivo by incorporating a polymerizable collagen scaffold to restore biophysical support and islet-collagen mechanobiological cues. Informed by computational models of gas and molecular transport relevant to β-cell physiology, a MPS configuration was down-selected based on simulated oxygen and nutrient delivery to collagen-encapsulated islets, and 3D-printing was applied as a readily accessible, low-cost rapid prototyping method. Recreating critical aspects of the in vivo microenvironment within the MPS via perfusion and islet-collagen interactions mitigated post-isolation ischemia and apoptosis in mouse islets over a 5-day period. In contrast, islets maintained in traditional suspension formats exhibited progressive hypoxic and apoptotic cores. Finally, dynamic glucose-stimulated insulin secretion measurements were performed on collagen-encapsulated mouse islets in the absence and presence of well-known chemical stressor thapsigargin using the MPS platform and compared to conventional protocols involving commercial perifusion machines. Overall, the MPS described here provides a user-friendly islet culture platform that not only supports long-term β-cell health and function but also enables multiparametric evaluations.
- Full text View on content provider's site
-
Kumar B, Feng A, Gheriani GA, Iftekhar A, Ni R, Dimachkie M, Gokalp G, Bazigh I, Moy L, Chao C, Lingamaneni A, Patel A, Cepero GS, Iqtidar T, Thoene PB, Knaack A, Swee ML, Suneja M, and Davis B
ACR open rheumatology [ACR Open Rheumatol] 2023 Sep 19. Date of Electronic Publication: 2023 Sep 19.
- Abstract
-
Objective: Design thinking is a creative problem-solving process used to better understand users' needs and experiences so that a product or service can be improved. Its emphasis on empathy, iterative prototyping, and participatory collaboration make it an ideal methodology for innovation in medical education. We apply this framework to the virtual rheumatology fellowship interview process so that interviews can become more applicant centered.
Methods: This educational quality improvement project uses a design-thinking framework to identify opportunities and challenges for rheumatology fellowship applicants. The investigators use the 5-step process (Empathize, Define, Ideate, Prototype, Test) and incorporate rapid qualitative analysis of semistructured interviews to innovate the interview experience. The iterative and collaborative nature of this process has empowered participants to codesign an applicant-centered interview experience.
Results: Interviews with fellowship applicants (n = 9), fellow physicians (n = 4), and faculty members (n = 3) identified three major dynamics of the interview process: (1) Is it a safe environment to ask questions? (2) How do I exchange information effectively? and (3) How do I fit all these data into the bigger picture? Creative brainstorming techniques at a series of three workshops yielded four prototypes emphasizing customization, hybridization, facilitation, and preparation. A finalized applicant-centered interview template was devised in preparation for the 2023-2024 application season.
Conclusion: Design thinking has yielded insights into three important dynamics that drive applicant experiences. These insights allow for a redesign of processes so that virtual interviews can be more applicant centered. This framework allows for further iterations and modifications as the needs of applicants and programs evolve over time.
(© 2023 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.)
- Full text View on content provider's site
10. Enhancing surgical planning of distal splenopancreatectomy through 3D printed models: a case report. [2023]
-
Arsenkov S, Plavevski O, Nikolovski A, Arsenkov L, Shurlani A, and Saliu V
Journal of surgical case reports [J Surg Case Rep] 2023 Sep 18; Vol. 2023 (9), pp. rjad528. Date of Electronic Publication: 2023 Sep 18 (Print Publication: 2023).
- Abstract
-
The complex anatomy of the peripancreatic region was a challenge to many surgeons in the past. Up until recently, the only way to prepare and plan a surgery was through the use of traditional 2D images, obtained via computed tomography or magnetic resonance imaging. Recently, the advantages in the field of 3D printing (also called additive manufacturing, or rapid prototyping) allowed the creation of replicas of the patient's anatomy which is to be used for preoperative planning and visual reference. We present the case of a 46-y.o. patient with a distal pancreatic lesion requiring a distal splenopancreatectomy, who benefited from the use of 3D printing technology. No intraoperative or postoperative complications were encountered, while the created model was used to plan and perform the needed resection.
Competing Interests: None declared.
(Published by Oxford University Press and JSCR Publishing Ltd. © The Author(s) 2023.)
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 10
Next