articles+ search results
175 articles+ results
1 - 10
Next
Number of results to display per page
1 - 10
Next
Number of results to display per page
-
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, and Zoller H
Nature reviews. Endocrinology [Nat Rev Endocrinol] 2023 May; Vol. 19 (5), pp. 299-310. Date of Electronic Publication: 2023 Feb 17.
- Subjects
-
Humans, Ferritins genetics, Ferritins metabolism, Iron metabolism, Iron Overload diagnosis, and Iron Overload genetics
- Abstract
-
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
(© 2023. Springer Nature Limited.)
- Full text View on content provider's site
-
Cruces L, de la Peña E, Livia C, and De Clercq P
Neotropical entomology [Neotrop Entomol] 2023 Apr; Vol. 52 (2), pp. 273-282. Date of Electronic Publication: 2022 Jun 21.
- Subjects
-
Animals, Insecta, Predatory Behavior, Larva, Nymph, Chenopodium quinoa, Heteroptera, and Aphids
- Abstract
-
In recent years, Liorhyssus hyalinus (Fabricius) (Hemiptera: Rhopalidae) and Nysius simulans Stål (Hemiptera: Lygaeidae) have emerged as important pests of quinoa in Peru, when the crop started to be cultivated at relatively low elevations. The potential of the native lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) was evaluated as a biological control agent of these two pest species. Prey consumption on all immature stages of L. hyalinus and N. simulans was assessed, as well as development on first instars of these heteropterans and eggs of Sitotroga cerealella (Olivier) (Lepidoptera: Pyralidae) as a factitious prey. In addition, prey preference was examined in the absence and presence of a preferred prey, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae). Larvae of the predator were not able to feed on L. hyalinus eggs, but they effectively did on N. simulans eggs as well as on all nymphal instars of both species. Nymphs of L. hyalinus were less suitable prey for larval development of C. externa than eggs of S. cerealella, whereas N. simulans was overall an unsuitable prey. There was a clear prey preference of C. externa for aphids over the two heteropteran species, as well as a preference for N. simulans over L. hyalinus. The predation rates in this study indicate the potential of C. externa as a predator of these heteropteran pests that can play a role in both conservation and augmentation biological control programs.
(© 2022. Sociedade Entomológica do Brasil.)
- Full text View on content provider's site
-
Tillman, P. Glynn, Kesheimer, Katelyn A., Hirsch, Katherine L., and Grabarczyk, Erin E.
Florida Entomologist . Mar2023, Vol. 106 Issue 1, p16-21. 6p.
- Subjects
-
BROWN marmorated stink bug, PREDATION, HEMIPTERA, STINKBUGS, PARASITISM, and LAURACEAE
- Abstract
-
The invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a polyphagous pest that disperses from non-crop host plants into crops in search of food. Sassafras trees (Sassafras albidum (Nutt.) Nees; Lauraceae) are found commonly in woodland habitats in the southeastern US and may therefore be a potential host. The main objective of this 2-yr study was to determine if sassafras serves as a host plant for this pest in woodland habitats adjacent to crops in Prattville, Alabama, and Byron, Georgia, USA. Each yr pheromone-baited traps were deployed in the canopy of sassafras trees to capture H. halys. We also evaluated parasitism and predation of H. halys sentinel egg masses by native parasitoids and predators in sassafras. Halyomorpha halys adult males and females as well as second through fifth instars were captured in traps and observed in sassafras trees over the season at both locations each yr of the study. Trissolcus euschisti Ashmead (Hymenoptera: Scelionidae) (67.7%) and Anastatus reduvii (Howard) (Hymenoptera: Eupelmidae) (18.3%) were the primary parasitoid species that emerged from H. halys sentinel egg masses. Stylet sucking (62.3%) and chewing (32.0%) were the primary types of predation on H. halys eggs. We conclude that sassafras is a reproductive host plant for H. halys, and native natural enemies prey on and parasitize H. halys egg masses in this host plant. La chinche hedionda invasora marrón marmolada, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), es una plaga polífaga que se dispersa de plantas hospedantes no cultivadas a los cultivos en busca de alimento. Se les encuentran en los árboles de sasafrás (Sassafras albidum [Nutt.] Nees; Lauraceae) comúnmente en hábitats boscosos del sureste de los EE. UU. y por lo tanto este puede ser un hospedero potencial. El objetivo principal de este estudio de 2 años fue determinar si el sasafrás sirve como planta hospedera para esta plaga en hábitats boscosos adyacentes a cultivos en Prattville, Alabama, y Byron, Georgia, EE. UU. Cada año, se colocaron trampas cebadas con feromonas en el dosel de los árboles de sasafrás para capturar H. halys. También evaluamos el parasitismo y la depredación de masas de huevos centinela de H. halys por parasitoides nativos y depredadores en sasafrás. Se capturaron machos y hembras adultos así como ninfas del segundo al quinto estadio de Halyomorpha halys en las trampas, y se observaron en árboles de sasafrás durante la temporada en ambos lugares cada año del estudio. Trissolcus euschisti Ashmead (Hymenoptera: Scelionidae) (67,7%) y Anastatus reduvii (Howard) (Hymenoptera: Eupelmidae) (18,3%) fueron las principales especies de parasitoides que emergieron de las masas de huevos centinela de H. halys. La succión por los estiletes (62,3%) y la masticación (32,0%) fueron las principales clases de depredación sobre los huevos de H. halys. Concluimos que el sasafrás es una planta hospedera reproductiva para H. halys, y los enemigos naturales nativos se alimentan y parasitan las masas de huevos de H. halys en esta planta hospedera. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
-
Tillman, P Glynn, Grabarczyk, Erin E, Balusu, Rammohan, Kesheimer, Katelyn, Blaauw, Brett, Sial, Ashfaq, Vinson, Edgar, and Cottrell, Ted E
Journal of Insect Science . Mar2023, Vol. 23 Issue 2, p1-12. 12p.
- Subjects
-
BROWN marmorated stink bug, STINKBUGS, PARASITISM, PREDATION, and HEMIPTERA
- Abstract
-
Stink bugs, including Halyomorpha halys (Stål) and Nezara viridula (L.), are agricultural pests that feed on fruit in a variety of crops. Monitoring predation and parasitism of stink bug egg masses furthers our understanding of potential biological control tactics. However, best practices for laboratory and field assessments of parasitism and predation of egg masses require further attention. We carried out a series of laboratory and field experiments to test whether parasitism and predation for three types of sentinel H. halys egg masses, fresh, frozen, and refrigerated, varied in agricultural commodities. In addition, we asked if predation and parasitism differed between sentinel and naturally occurring H. halys and N. viridula egg masses in soybean. In the laboratory, more H. halys eggs were parasitized by Trissolcus euschisti (Ashmead) (Hymenoptera: Scelionidae) if they were frozen or refrigerated compared to fresh eggs. Similarly, in the field, parasitism was higher for frozen egg masses than fresh. In 2018 and 2019, H. halys natural egg masses had higher parasitism and lower predation compared to sentinel egg masses in soybean. In a paired field test during 2020 and 2021, there was no difference in parasitism between H. halys natural and sentinel eggs, but much higher incidence of parasitism was detected in natural N. viridula egg masses than sentinel eggs. Collecting natural egg masses is the best methodology for field assessment of parasitism of stink bug egg masses; however, if natural egg masses are not easily available, deploying refrigerated sentinel egg masses is a good alternative. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
-
Guimier A, de Pontual L, Braddock SR, Torti E, Pérez-Jurado LA, Muñoz-Cabello P, Arumí M, Monaghan KG, Lee H, Wang LK, Pluym ID, Lynch SA, Stals K, Ellard S, Muller C, Houyel L, Cohen L, Lyonnet S, Bajolle F, Amiel J, and Gordon CT
Human molecular genetics [Hum Mol Genet] 2023 Jan 13; Vol. 32 (3), pp. 353-356.
- Subjects
-
Humans, Heart Defects, Congenital, and Truncus Arteriosus, Persistent
- Full text View on content provider's site
-
Vendrik KEW, Kuijper EJ, Dimmendaal M, Silvis W, Denie-Verhaegh E, de Boer A, Postma B, Schoffelen AF, Ruijs WLM, Koene FMHPA, Petrignani M, Hooiveld M, Witteveen S, Schouls LM, and Notermans DW
Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin [Euro Surveill] 2022 Dec; Vol. 27 (49).
- Subjects
-
Child, Humans, Fusidic Acid therapeutic use, Fusidic Acid pharmacology, Methicillin, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents therapeutic use, Netherlands epidemiology, Staphylococcus aureus, Disease Outbreaks, Microbial Sensitivity Tests, Methicillin-Resistant Staphylococcus aureus, Impetigo drug therapy, Impetigo epidemiology, Staphylococcal Infections drug therapy, and Staphylococcal Infections epidemiology
- Abstract
-
In this retrospective observational study, we analysed a community outbreak of impetigo with meticillin-resistant Staphylococcus aureus (MRSA), with additional resistance to fusidic acid (first-line treatment). The outbreak occurred between June 2018 and January 2020 in the eastern part of the Netherlands with an epidemiological link to three cases from the north-western part. Forty nine impetigo cases and eight carrier cases were identified, including 47 children. All but one impetigo case had community-onset of symptoms. Pharmacy prescription data for topical mupirocin and fusidic acid and GP questionnaires suggested an underestimated outbreak size. The 57 outbreak isolates were identified by the Dutch MRSA surveillance as MLVA-type MT4627 and sequence type 121, previously reported only once in 2014. Next-generation sequencing revealed they contained a fusidic acid resistance gene, exfoliative toxin genes and an epidermal cell differentiation inhibitor gene. Whole-genome multilocus sequence typing revealed genetic clustering of all 19 sequenced isolates from the outbreak region and isolates from the three north-western cases. The allelic distances between these Dutch isolates and international isolates were high. This outbreak shows the appearance of community-onset MRSA strains with additional drug resistance and virulence factors in a country with a low prevalence of antimicrobial resistance.
- Full text View on content provider's site
-
Noordermeer T, Schutgens REG, Visser C, Rademaker E, de Maat MPM, Jansen AJG, Limper M, Cremer OL, Kruip MJHA, Endeman H, Maas C, de Laat B, and Urbanus RT
Research and practice in thrombosis and haemostasis [Res Pract Thromb Haemost] 2022 Sep 16; Vol. 6 (6), pp. e12809. Date of Electronic Publication: 2022 Sep 16 (Print Publication: 2022).
- Abstract
-
Background: Thrombosis is a frequent and severe complication in patients with coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). Lupus anticoagulant (LA) is a strong acquired risk factor for thrombosis in various diseases and is frequently observed in patients with COVID-19. Whether LA is associated with thrombosis in patients with severe COVID-19 is currently unclear.
Objective: To investigate if LA is associated with thrombosis in critically ill patients with COVID-19.
Patients/methods: The presence of LA and other antiphospholipid antibodies was assessed in patients with COVID-19 admitted to the ICU. LA was determined with dilute Russell's viper venom time (dRVVT) and LA-sensitive activated partial thromboplastin time (aPTT) reagents.
Results: Of 169 patients with COVID-19, 116 (69%) tested positive for at least one antiphospholipid antibody upon admission to the ICU. Forty (24%) patients tested positive for LA; of whom 29 (17%) tested positive with a dRVVT, 19 (11%) tested positive with an LA-sensitive aPTT, and 8 (5%) tested positive on both tests. Fifty-eight (34%) patients developed thrombosis after ICU admission. The odds ratio (OR) for thrombosis in patients with LA based on a dRVVT was 2.5 (95% confidence interval [CI], 1.1-5.7), which increased to 4.5 (95% CI, 1.4-14.3) in patients at or below the median age in this study (64 years). LA positivity based on a dRVVT or LA-sensitive aPTT was only associated with thrombosis in patients aged less than 65 years (OR, 3.8; 95% CI, 1.3-11.4) and disappeared after adjustment for C-reactive protein.
Conclusion: Lupus anticoagulant on admission is strongly associated with thrombosis in critically ill patients with COVID-19, especially in patients aged less than 65 years.
(© 2022 The Authors. Research and Practice in Thrombosis and Haemostasis published by Wiley Periodicals LLC on behalf of International Society on Thrombosis and Haemostasis (ISTH).)
- Full text View on content provider's site
-
Cruces L, de la Peña E, and De Clercq P
Journal of insect science (Online) [J Insect Sci] 2022 Jul 01; Vol. 22 (4).
- Subjects
-
Animals, Biology, Diet, Female, Nymph growth development, Ovum, Heteroptera growth development, Temperature, and Zea mays
- Abstract
-
When quinoa, Chenopodium quinoa Willd., is cultivated in South America outside of its Andean origin, the heteropterans Liorhyssus hyalinus (Fabricius) and Nysius simulans Stål may emerge as important pests. Here we studied the development and reproduction of both species at different constant temperatures in the laboratory. Egg and nymphal development were investigated at 18, 22, 26, 30, 34, and 36°C. For both species, egg incubation time significantly decreased as the temperature increased. Nymphs did not successfully develop at 18°C and the total nymphal time significantly decreased as the temperature increased from 22 to 36°C. Based on a linear day-degree (DD) model, the lower developmental threshold (LDT) temperatures for eggs and nymphs were estimated to be 16.0 and 17.9°C for L. hyalinus, and 16.1 and 19.7°C for N. simulans, respectively. Thermal requirements for egg and nymphal development were 68.6 and 114.8 DD for L. hyalinus, and 77.7 and 190.3 DD for N. simulans, respectively. Reproduction and adult longevity were studied at 22, 26, 30, and 34°C. For both species preoviposition time decreased as temperature increased, and the oviposition period was longest at 26°C. The highest fecundity and egg viability were observed at 30°C, whereas longevities were higher at 22-26°C than at 30-34°C. As the lowest tested temperatures were not suitable to both heteropterans and 30°C was found to be the optimal temperature for development and reproduction, peak densities are expected in warm areas and seasons.
(© The Author(s) 2022. Published by Oxford University Press on behalf of Entomological Society of America.)
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 10
Next