APA
Massie, A. B., Boyarsky, B. J., Werbel, W. A., Bae, S., Chow, E. K. H., Avery, R. K., Durand, C. M., Desai, N., Brennan, D., Garonzik-Wang, J. M., & Segev, D. L. (2020). Identifying scenarios of benefit or harm from kidney transplantation during the COVID-19 pandemic: A stochastic simulation and machine learning study. American Journal of Transplantation, 20(11), 2997. https://doi.org/10.1111/ajt.16117
CHICAGO
Massie, Allan B., Brian J. Boyarsky, William A. Werbel, Sunjae Bae, Eric K. H. Chow, Robin K. Avery, Christine M. Durand, et al. 2020. “Identifying Scenarios of Benefit or Harm from Kidney Transplantation during the COVID-19 Pandemic: A Stochastic Simulation and Machine Learning Study.” American Journal of Transplantation 20 (11): 2997. doi:10.1111/ajt.16117.
HARVARD
Massie, A. B. et al. (2020) ‘Identifying scenarios of benefit or harm from kidney transplantation during the COVID-19 pandemic: A stochastic simulation and machine learning study’, American Journal of Transplantation, 20(11), p. 2997. doi: 10.1111/ajt.16117.
MLA
Massie, Allan B., et al. “Identifying Scenarios of Benefit or Harm from Kidney Transplantation during the COVID-19 Pandemic: A Stochastic Simulation and Machine Learning Study.” American Journal of Transplantation, vol. 20, no. 11, Nov. 2020, p. 2997., doi:10.1111/ajt.16117.
TURABIAN
Massie, Allan B., Brian J. Boyarsky, William A. Werbel, Sunjae Bae, Eric K. H. Chow, Robin K. Avery, Christine M. Durand, et al. “Identifying Scenarios of Benefit or Harm from Kidney Transplantation during the COVID-19 Pandemic: A Stochastic Simulation and Machine Learning Study.” American Journal of Transplantation 20, no. 11 (November 1, 2020): 2997. doi:10.1111/ajt.16117.