1  2
Number of results to display per page
 Benenti, Giuliano, 1969
 Singapore ; River Edge, NJ : World Scientific Pub., 2004.
 Description
 Book — 1 online resource (1 volume) : illustrations
 Summary

 1. Introduction to classical computation. 1.1. The Turing machine. 1.2. The circuit model of computation. 1.3. Computational complexity. 1.4. Computing dynamical systems. 1.5. Energy and information. 1.6. Reversible computation. 1.7. A guide to the bibliography
 2. Introduction to quantum mechanics. 2.1. The SternGerlach experiment. 2.2. Young's doubleslit experiment. 2.3. Linear vector spaces. 2.4. The postulates of quantum mechanics. 2.5. The EPR paradox and Bell's inequalities. 2.6. A guide to the bibliography
 3. Quantum computation. 3.1. The qubit. 3.2. The circuit model of quantum computation. 3.3. Singlequbit gates. 3.4. Controlled gates and entanglement generation. 3.5. Universal quantum gates. 3.6. Unitary errors. 3.7. Function evaluation. 3.8. The quantum adder. 3.9. Deutsch's algorithm. 3.10. Quantum search. 3.11. The quantum Fourier transform. 3.12. Quantum phase estimation. 3.13. Finding eigenvalues and eigenvectors. 3.14. Period finding and Shor's algorithm. 3.15. Quantum computation of dynamical systems. 3.16. First experimental implementations. 3.17. A guide to the bibliography
 4. Quantum communication. 4.1. Classical cryptography. 4.2. The nocloning theorem. 4.3. Quantum cryptography. 4.4. Dense coding. 4.5 Quantum teleportation. 4.6. An overview of the experimental implementations. 4.7. A guide to the bibliography.
(source: Nielsen Book Data)
2. Principles of quantum computation and information. Volume 1, Basic concepts [electronic resource] [2004]
 Benenti, Giuliano, 1969
 Singapore ; Hackensack, N.J. : World Scientific Pub. Co., c2004.
 Description
 Book — xiv, 256 p. : ill.
 Summary

 1. Introduction to classical computation. 1.1. The Turing machine. 1.2. The circuit model of computation. 1.3. Computational complexity. 1.4. Computing dynamical systems. 1.5. Energy and information. 1.6. Reversible computation. 1.7. A guide to the bibliography
 2. Introduction to quantum mechanics. 2.1. The SternGerlach experiment. 2.2. Young's doubleslit experiment. 2.3. Linear vector spaces. 2.4. The postulates of quantum mechanics. 2.5. The EPR paradox and Bell's inequalities. 2.6. A guide to the bibliography
 3. Quantum computation. 3.1. The qubit. 3.2. The circuit model of quantum computation. 3.3. Singlequbit gates. 3.4. Controlled gates and entanglement generation. 3.5. Universal quantum gates. 3.6. Unitary errors. 3.7. Function evaluation. 3.8. The quantum adder. 3.9. Deutsch's algorithm. 3.10. Quantum search. 3.11. The quantum Fourier transform. 3.12. Quantum phase estimation. 3.13. Finding eigenvalues and eigenvectors. 3.14. Period finding and Shor's algorithm. 3.15. Quantum computation of dynamical systems. 3.16. First experimental implementations. 3.17. A guide to the bibliography
 4. Quantum communication. 4.1. Classical cryptography. 4.2. The nocloning theorem. 4.3. Quantum cryptography. 4.4. Dense coding. 4.5 Quantum teleportation. 4.6. An overview of the experimental implementations. 4.7. A guide to the bibliography.
(source: Nielsen Book Data)
Articles+
Journal articles, ebooks, & other eresources
 Articles+ results include