- Book
- pages ; cm
- Chapter 1: Introduction M. R. Riazi and David Chiaramonti Chapter 2: Chemistry and Nature of Biofuels M. Joana Neiva Correia, M. Margarida Mateus, and M. Cristina Fernandes Chapter 3: Data on Biofuels Production, Trade and Demand D. Thran, E. Billig, K. Naumann, K. Oehmichen, D. Pfeiffer, and, K. Zech Chapter 4: Physiochemical Properties of Biofuels B. Brian He and Zhidan Liu Chapter 5: Raw Materials for Biofuels Production Jasvinder Singh and Jayati Trivedi Chapter 6: Biofuels Production Processes and Technologies Franziska Muller-Langer, Marco Klemm, and Jens Schneider Chapter 7: Biofuels Characterization and Standards Methods for Quality Control M. Di Serio, R. Turco, R. Vitiello, and R. Tesser Chapter 8: Production of Bio-Oil Kevin M. Van Geem, Ismael Amghizar, Florence Vermeire, and Ruben De Bruycker Chapter 9: Biodiesel Fuels: Properties and Quality Paolo Bondioli Chapter 10: Feasible Processes for Continuous Biodiesel Production from Multi-Feedstocks Naomi Shibasaki-Kitakawa and Toshikuni Yonemoto Chapter 11: Aviation Biofuels: Processes, Opportunities, Constraints and Perspectives D. Chiaramonti and L.A. Horta Nogueira Chapter 12: Liquid Hydrocarbon Biofuels from Lipids Alexander Asiedu and Sandeep Kumar Chapter 13: Alcohol Fuels: The Biochemical Route Elia Tomas-Pejo, Antonio D. Moreno, E Tomas-Pejo, and A.D. Moreno Chapter 14: Alcohol Fuels: The Thermochemical Route Gnouyaro P. Assima, Ingrid Zamboni, and Jean-Michel Lavoie Chapter 15: Production of Biogas and BioH2 - Biochemical Methods N. Lapa, E. Surra, I. A. A. C. Esteves, R. P. P. L. Ribeiro, and J. P. B. Mota Chapter 16: Production of Substitute Natural Gas: Thermochemical Methods J. Karl and M. Neubert Chapter 17: Biogas Production from Biomass Wastes Juan A. Melero, Fernando Martinez, Raul Molina, Yolanda Segura, and Daniel Puyol Chapter 18: Advances in Catalysts for Liquid Biofuels Production Processes V. Russo, R. Tesser, and M. Di Serio Chapter 19: Biorefineries: Biofuels, Biochemicals and Bioproducts Isabella De Bari, Daniela Cuna, and Nicola Di Fidio Chapter 20: Engine Performance: Biofuels vs Petrofuels Roberto Guimaraes Pereira, Oscar Edwin Piamba Tulcan, and Carlos Eduardo Fellows Chapter 21: Life Cycle Assessment of Biofuel Production Yolanda Lechon and Cristina de la Rua Lope Chapter 22: Economical Assessment of Biofuel Production Bruce McCarl, Jason Jones, Montalee Kapilakanchana, Guannan Zhao, and Zidong Wang Chapter 23: Economic Assessment for Biodiesel Production Jorge M. Marchetti and Mangesh R. Avhad Chapter 24: Future Trends and Outlook in Biofuels Production Arnaldo Walter.
- (source: Nielsen Book Data)9781138746152 20171218
- Chapter 1 Introduction: Biofuel Production and Processing Technology M.R. Riazi and David Chiaramonti Chapter 2 Chemistry and Nature of Biofuels Maria Joana Neiva Correia, M. Margarida Mateus, and Maria Cristina Fernandes Chapter 3 Data on Biofuels Production, Trade, and Demand Daniela Thran, K. Naumann, E. Billig, M. Millinger, K. Oehmichen, D. Pfeiffer, and K. Zech Chapter 4 Physicochemical Properties of Biofuels B. Brian He and Zhidan Liu Chapter 5 Raw Materials for Biofuels Production Jasvinder Singh and Jayati Trivedi Chapter 6 Biofuels Production Processes and Technologies Franziska Muller-Langer, Marco Klemm, and Jens Schneider Chapter 7 Biofuels Characterization and Standard Methods for Quality Control Martino Di Serio, Rosa Turco, Rosa Vitiello, and Riccardo Tesser Chapter 8 Production of Bio-Oil Kevin M. Van Geem, Ismael Amghizar, Florence Vermeire, and Ruben De Bruycker Chapter 9 Biodiesel Fuels: Properties and Quality Paolo Bondioli Chapter 10 Feasible Processes for Continuous Biodiesel Production from Multi-Feedstocks Naomi Shibasaki-Kitakawa and Toshikuni Yonemoto Chapter 11 Aviation Biofuels: Processes, Opportunities, Constraints, and Perspectives David Chiaramonti and Luiz A. Horta Nogueira Chapter 12 Liquid Hydrocarbon Biofuels from Lipids Alexander Asiedu and Sandeep Kumar Chapter 13 Alcohol Fuels: The Biochemical Route Elia Tomas-Pejo and Antonio D. Moreno Chapter 14 Alcohol Fuels: The Thermochemical Route Gnouyaro P. Assima, Ingrid Zamboni, and Jean-Michel Lavoie Chapter 15 Production of Biogas and bioH2: Biochemical Methods Nuno Lapa, Elena Surra, Isabel A.A.C. Esteves, Rui P.P.L. Ribeiro, and Jose P.B. Mota Chapter 16 Production of Substitute Natural Gas: Thermochemical Methods Jurgen Karl and Michael Neubert Chapter 17 Biogas Production from Biomass Wastes Juan Antonio Melero, Fernando Martinez, Raul Molina, Yolanda Segura, and Daniel Puyol Chapter 18 Advances in Catalysts for Liquid Biofuel Production Processes Vincenzo Russo, Riccardo Tesser, and Martino Di Serio Chapter 19 Biorefineries: Biofuels, Biochemicals, and Bioproducts Isabella De Bari, Daniela Cuna, and Nicola Di Fidio Chapter 20 Engine Performance: Biofuels versus Petrofuels Roberto Guimaraes Pereira, Oscar Edwin Piamba Tulcan, and Carlos Eduardo Fellows Chapter 21 Life Cycle Assessment of Biofuel Production Cristina de la Rua Lope and Yolanda Lechon Chapter 22 Economical Assessment of Biofuel Production B.A. McCarl, J.P.H. Jones, M. Kapilakanchana, M.Z. Wang, and G. Zhao Chapter 23 Economic Assessment of Biodiesel Production Jorge Mario Marchetti and Mangesh R. Avhad Chapter 24 Future Trends and Outlook in Biofuels Production Arnaldo Walter.
- (source: Nielsen Book Data)9781498778930 20171218
(source: Nielsen Book Data)9781138746152 20171218
- Chapter 1: Introduction M. R. Riazi and David Chiaramonti Chapter 2: Chemistry and Nature of Biofuels M. Joana Neiva Correia, M. Margarida Mateus, and M. Cristina Fernandes Chapter 3: Data on Biofuels Production, Trade and Demand D. Thran, E. Billig, K. Naumann, K. Oehmichen, D. Pfeiffer, and, K. Zech Chapter 4: Physiochemical Properties of Biofuels B. Brian He and Zhidan Liu Chapter 5: Raw Materials for Biofuels Production Jasvinder Singh and Jayati Trivedi Chapter 6: Biofuels Production Processes and Technologies Franziska Muller-Langer, Marco Klemm, and Jens Schneider Chapter 7: Biofuels Characterization and Standards Methods for Quality Control M. Di Serio, R. Turco, R. Vitiello, and R. Tesser Chapter 8: Production of Bio-Oil Kevin M. Van Geem, Ismael Amghizar, Florence Vermeire, and Ruben De Bruycker Chapter 9: Biodiesel Fuels: Properties and Quality Paolo Bondioli Chapter 10: Feasible Processes for Continuous Biodiesel Production from Multi-Feedstocks Naomi Shibasaki-Kitakawa and Toshikuni Yonemoto Chapter 11: Aviation Biofuels: Processes, Opportunities, Constraints and Perspectives D. Chiaramonti and L.A. Horta Nogueira Chapter 12: Liquid Hydrocarbon Biofuels from Lipids Alexander Asiedu and Sandeep Kumar Chapter 13: Alcohol Fuels: The Biochemical Route Elia Tomas-Pejo, Antonio D. Moreno, E Tomas-Pejo, and A.D. Moreno Chapter 14: Alcohol Fuels: The Thermochemical Route Gnouyaro P. Assima, Ingrid Zamboni, and Jean-Michel Lavoie Chapter 15: Production of Biogas and BioH2 - Biochemical Methods N. Lapa, E. Surra, I. A. A. C. Esteves, R. P. P. L. Ribeiro, and J. P. B. Mota Chapter 16: Production of Substitute Natural Gas: Thermochemical Methods J. Karl and M. Neubert Chapter 17: Biogas Production from Biomass Wastes Juan A. Melero, Fernando Martinez, Raul Molina, Yolanda Segura, and Daniel Puyol Chapter 18: Advances in Catalysts for Liquid Biofuels Production Processes V. Russo, R. Tesser, and M. Di Serio Chapter 19: Biorefineries: Biofuels, Biochemicals and Bioproducts Isabella De Bari, Daniela Cuna, and Nicola Di Fidio Chapter 20: Engine Performance: Biofuels vs Petrofuels Roberto Guimaraes Pereira, Oscar Edwin Piamba Tulcan, and Carlos Eduardo Fellows Chapter 21: Life Cycle Assessment of Biofuel Production Yolanda Lechon and Cristina de la Rua Lope Chapter 22: Economical Assessment of Biofuel Production Bruce McCarl, Jason Jones, Montalee Kapilakanchana, Guannan Zhao, and Zidong Wang Chapter 23: Economic Assessment for Biodiesel Production Jorge M. Marchetti and Mangesh R. Avhad Chapter 24: Future Trends and Outlook in Biofuels Production Arnaldo Walter.
- (source: Nielsen Book Data)9781138746152 20171218
- Chapter 1 Introduction: Biofuel Production and Processing Technology M.R. Riazi and David Chiaramonti Chapter 2 Chemistry and Nature of Biofuels Maria Joana Neiva Correia, M. Margarida Mateus, and Maria Cristina Fernandes Chapter 3 Data on Biofuels Production, Trade, and Demand Daniela Thran, K. Naumann, E. Billig, M. Millinger, K. Oehmichen, D. Pfeiffer, and K. Zech Chapter 4 Physicochemical Properties of Biofuels B. Brian He and Zhidan Liu Chapter 5 Raw Materials for Biofuels Production Jasvinder Singh and Jayati Trivedi Chapter 6 Biofuels Production Processes and Technologies Franziska Muller-Langer, Marco Klemm, and Jens Schneider Chapter 7 Biofuels Characterization and Standard Methods for Quality Control Martino Di Serio, Rosa Turco, Rosa Vitiello, and Riccardo Tesser Chapter 8 Production of Bio-Oil Kevin M. Van Geem, Ismael Amghizar, Florence Vermeire, and Ruben De Bruycker Chapter 9 Biodiesel Fuels: Properties and Quality Paolo Bondioli Chapter 10 Feasible Processes for Continuous Biodiesel Production from Multi-Feedstocks Naomi Shibasaki-Kitakawa and Toshikuni Yonemoto Chapter 11 Aviation Biofuels: Processes, Opportunities, Constraints, and Perspectives David Chiaramonti and Luiz A. Horta Nogueira Chapter 12 Liquid Hydrocarbon Biofuels from Lipids Alexander Asiedu and Sandeep Kumar Chapter 13 Alcohol Fuels: The Biochemical Route Elia Tomas-Pejo and Antonio D. Moreno Chapter 14 Alcohol Fuels: The Thermochemical Route Gnouyaro P. Assima, Ingrid Zamboni, and Jean-Michel Lavoie Chapter 15 Production of Biogas and bioH2: Biochemical Methods Nuno Lapa, Elena Surra, Isabel A.A.C. Esteves, Rui P.P.L. Ribeiro, and Jose P.B. Mota Chapter 16 Production of Substitute Natural Gas: Thermochemical Methods Jurgen Karl and Michael Neubert Chapter 17 Biogas Production from Biomass Wastes Juan Antonio Melero, Fernando Martinez, Raul Molina, Yolanda Segura, and Daniel Puyol Chapter 18 Advances in Catalysts for Liquid Biofuel Production Processes Vincenzo Russo, Riccardo Tesser, and Martino Di Serio Chapter 19 Biorefineries: Biofuels, Biochemicals, and Bioproducts Isabella De Bari, Daniela Cuna, and Nicola Di Fidio Chapter 20 Engine Performance: Biofuels versus Petrofuels Roberto Guimaraes Pereira, Oscar Edwin Piamba Tulcan, and Carlos Eduardo Fellows Chapter 21 Life Cycle Assessment of Biofuel Production Cristina de la Rua Lope and Yolanda Lechon Chapter 22 Economical Assessment of Biofuel Production B.A. McCarl, J.P.H. Jones, M. Kapilakanchana, M.Z. Wang, and G. Zhao Chapter 23 Economic Assessment of Biodiesel Production Jorge Mario Marchetti and Mangesh R. Avhad Chapter 24 Future Trends and Outlook in Biofuels Production Arnaldo Walter.
- (source: Nielsen Book Data)9781498778930 20171218
(source: Nielsen Book Data)9781138746152 20171218
- Book
- 1 online resource.
4. Fluid mechanics for chemical engineers : with microfluidics, CFD, and COMSOL multiphysics 5 [2018]
- Book
- xvii, 786 pages ; 26 cm.
- Preface Part I: Macroscopic Fluid Mechanics Chapter 1: Introduction to Fluid Mechanics Chapter 2: Mass, Energy, and Momentum Balances Chapter 3: Fluid Friction in Pipes Chapter 4: Flow in Chemical Engineering Equipment Part II: Microscopic Fluid Mechanics Chapter 5: Differential Equations of Fluid Mechanics Chapter 6: Solution of Viscous-Flow Problems Chapter 7: Laplace's Equation, Irrotational and Porous-Media Flows Chapter 8: Boundary-Layer and Other Nearly Unidirectional Flows Chapter 9: Turbulent Flow Chapter 10: Bubble Motion, Two-Phase Flow, and Fluidization Chapter 11: Non-Newtonian Fluids Chapter 12: Microfluidics and Electrokinetic Flow Effects Chapter 13: An Introduction to Computational Fluid Dynamics and ANSYS Fluent Chapter 14: COMSOL Multiphysics for Solving Fluid Mechanics Problems Appendix A: Useful Mathematical Relationships Appendix B: Answers to the True/False Assertions Appendix C: Some Vector and Tensor Operations General Index COMSOL Multiphysics Index The Authors.
- (source: Nielsen Book Data)9780134712826 20171017
(source: Nielsen Book Data)9780134712826 20171017
- Preface Part I: Macroscopic Fluid Mechanics Chapter 1: Introduction to Fluid Mechanics Chapter 2: Mass, Energy, and Momentum Balances Chapter 3: Fluid Friction in Pipes Chapter 4: Flow in Chemical Engineering Equipment Part II: Microscopic Fluid Mechanics Chapter 5: Differential Equations of Fluid Mechanics Chapter 6: Solution of Viscous-Flow Problems Chapter 7: Laplace's Equation, Irrotational and Porous-Media Flows Chapter 8: Boundary-Layer and Other Nearly Unidirectional Flows Chapter 9: Turbulent Flow Chapter 10: Bubble Motion, Two-Phase Flow, and Fluidization Chapter 11: Non-Newtonian Fluids Chapter 12: Microfluidics and Electrokinetic Flow Effects Chapter 13: An Introduction to Computational Fluid Dynamics and ANSYS Fluent Chapter 14: COMSOL Multiphysics for Solving Fluid Mechanics Problems Appendix A: Useful Mathematical Relationships Appendix B: Answers to the True/False Assertions Appendix C: Some Vector and Tensor Operations General Index COMSOL Multiphysics Index The Authors.
- (source: Nielsen Book Data)9780134712826 20171017
(source: Nielsen Book Data)9780134712826 20171017
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Stacks | |
TP155.7 .W55 2018 | Unknown |
- Book
- xviii, 246 pages ; 26 cm
"Discusses the analytical and numerical techniques for solving various mathematical model equations, including nonlinear algebraic equations, initial value ordinary differential equations (ODEs) and boundary value ODEs"-- Provided by publisher.
"Discusses the analytical and numerical techniques for solving various mathematical model equations, including nonlinear algebraic equations, initial value ordinary differential equations (ODEs) and boundary value ODEs"-- Provided by publisher.
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Stacks | |
TP155.2 .M34 C55 2018 | Unavailable In process Request |
6. 2017 AIChE Spring Meeting & 13th Global Congress on Process Safety : process safety spotlights [2017]
- Book
- 1 online resource.
- Book
- 1 online resource (4535 pages).
- 1. Scientific organization 2. Plenary lectures 3. Modelling and simulation 4. Synthesis and Design 5. Planning and scheduling 6. Process monitoring and control 7. Integrated and holistic approaches for decision support 8. CAPE concepts, methods and tools 9. CAPE applications addressing global grand challenges 10. CAPE/PSE education and training.
- (source: Nielsen Book Data)9780444639653 20171211
(source: Nielsen Book Data)9780444639653 20171211
- 1. Scientific organization 2. Plenary lectures 3. Modelling and simulation 4. Synthesis and Design 5. Planning and scheduling 6. Process monitoring and control 7. Integrated and holistic approaches for decision support 8. CAPE concepts, methods and tools 9. CAPE applications addressing global grand challenges 10. CAPE/PSE education and training.
- (source: Nielsen Book Data)9780444639653 20171211
(source: Nielsen Book Data)9780444639653 20171211
- Book
- 1 online resource
* Facilitates the process of learning and later mastering Aspen Plus(R) with step by step examples and succinct explanations * Step-by-step textbook for identifying solutions to various process engineering problems via screenshots of the Aspen Plus(R) platforms in parallel with the related text * Includes end-of-chapter problems and term project problems * Includes online exam and quiz problems for instructors that are parametrized (i.e., adjustable) so that each student will have a standalone version * Includes extra online material for students such as Aspen Plus(R)-related files that are used in the working tutorials throughout the entire textbook.
(source: Nielsen Book Data)9781119131236 20170313
(source: Nielsen Book Data)9781119131236 20170313
* Facilitates the process of learning and later mastering Aspen Plus(R) with step by step examples and succinct explanations * Step-by-step textbook for identifying solutions to various process engineering problems via screenshots of the Aspen Plus(R) platforms in parallel with the related text * Includes end-of-chapter problems and term project problems * Includes online exam and quiz problems for instructors that are parametrized (i.e., adjustable) so that each student will have a standalone version * Includes extra online material for students such as Aspen Plus(R)-related files that are used in the working tutorials throughout the entire textbook.
(source: Nielsen Book Data)9781119131236 20170313
(source: Nielsen Book Data)9781119131236 20170313
9. Chemical engineering fluid mechanics [2017]
- Book
- 1 online resource (1 volume) : illustrations
- Contents 1. Basic Concepts 2. Dimensional Analysis and Scale-Up 3. Fluid Properties in Perspective 4. Fluid Statics 5. Conservation Principles 6. Pipe Flow 7. Internal Flow Applications 8. Pumps and Compressors 9. Compressible Flows 10. Flow Measurement 11. Safety Relief and Control Valves 12. External Flows 13. Fluid-Solid Separations by Free Settling 14. Flow in Porous Media 15. Fluidization and Sedimentation 16. Two-Phase Flow.
- (source: Nielsen Book Data)9781498724456 20180213
(source: Nielsen Book Data)9781498724456 20180213
- Contents 1. Basic Concepts 2. Dimensional Analysis and Scale-Up 3. Fluid Properties in Perspective 4. Fluid Statics 5. Conservation Principles 6. Pipe Flow 7. Internal Flow Applications 8. Pumps and Compressors 9. Compressible Flows 10. Flow Measurement 11. Safety Relief and Control Valves 12. External Flows 13. Fluid-Solid Separations by Free Settling 14. Flow in Porous Media 15. Fluidization and Sedimentation 16. Two-Phase Flow.
- (source: Nielsen Book Data)9781498724456 20180213
(source: Nielsen Book Data)9781498724456 20180213
10. Chemical engineering process simulation [2017]
- Book
- 1 online resource : illustrations.
- Front Cover; Chemical Engineering Process Simulation; Chemical Engineering Process Simulation; Copyright; Contents; List of Contributors; How to Use This Book; 1
- Basics of Process Simulation; 1
- Introduction to Process Simulation; 1.1 PROCESS DESIGN AND SIMULATION; 1.2 HISTORICAL PERSPECTIVE FOR PROCESS SIMULATION; 1.3 BASIC ARCHITECTURES FOR COMMERCIAL SOFTWARE; 1.4 BASIC ALGORITHMS FOR PROCESS SIMULATION; 1.4.1 Sequential Modular Approach; 1.4.2 Equation-Oriented Approach; 1.5 INCORPORATION OF PROCESS SYNTHESIS MODEL AND SEQUENTIAL MODULAR APPROACH
- Example 1.1: n-Octane Production Example1.6 TEN GOOD HABITS FOR PROCESS SIMULATION; REFERENCES; 2
- Registration of New Components; 2.1 REGISTRATION OF HYPOTHETICAL COMPONENTS; 2.1.1 Hypothetical Component Registration With Aspen HYSYS; Example 2.1; 2.1.2 Hypothetical Component Registration With PRO/II; Example 2.2; 2.2 REGISTRATION OF CRUDE OIL; Example 2.3 Crude Oil Registration With Aspen HYSYS; Step 1: Characterization of Crude Assay; Step 2: Generate Pseudocomponents-Create Cut and Blend; Step 3: Install the Oil in the Flowsheet; Example 2.4 Crude Oil Registration in PRO/II; Exercise
- 3.3.2.3 Peng-Robinson3.3.2.4 Reducing the "Attractive Force"; 3.3.2.5 Increasing the "Attractive Force"; Example 3.1; 3.4 LIQUID VOLUMES (WALAS, 1985); 3.5 VISCOSITY AND OTHER PROPERTIES; 3.6 PHASE EQUILIBRIA; 3.6.1 Vapor Phase Correction; 3.6.2 Liquid Phase Corrections; 3.6.3 Bringing It All Together; 3.7 FLASH CALCULATIONS (SMITH ET AL.); 3.7.1 "MESH" Equations; 3.7.1.1 Material Balance; 3.7.1.2 Equilibrium; 3.7.1.3 Summation; 3.7.1.4 Heat Balance; 3.7.2 Bubble Point Flash; 3.7.2.1 Methodology; 3.7.3 Dew Point Flash; 3.7.4 Two-Phase Pressure-Temperature Flash; 3.7.5 Other Flash Routines
- 3.8 PHASE DIAGRAMS3.8.1 Pressure-Temperature Diagrams of Pure Components and Mixtures; 3.8.2 Retrograde Behavior; 3.9 CONCLUSIONS; EXERCISES; REFERENCES; FURTHER READING; 4
- Simulation of Recycle Streams; 4.1 TYPES OF RECYCLE STREAMS; 4.2 TIPS IN HANDLING RECYCLE STREAMS; 4.2.1 Analyze the Flowsheet; 4.2.2 Provide Estimates for Recycle Streams; 4.2.3 Simplify the Flowsheet; 4.2.4 Avoid Overspecifying Mass Balance; 4.2.5 Check for Trapped Material; 4.2.6 Increase Number of Iterations; 4.3 RECYCLE CONVERGENCE AND ACCELERATION TECHNIQUES; Example 4.1; EXERCISES; REFERENCES; 2
- UniSim Design
- 5
- Basics of Process Simulation With UniSim Design
- Front Cover; Chemical Engineering Process Simulation; Chemical Engineering Process Simulation; Copyright; Contents; List of Contributors; How to Use This Book; 1
- Basics of Process Simulation; 1
- Introduction to Process Simulation; 1.1 PROCESS DESIGN AND SIMULATION; 1.2 HISTORICAL PERSPECTIVE FOR PROCESS SIMULATION; 1.3 BASIC ARCHITECTURES FOR COMMERCIAL SOFTWARE; 1.4 BASIC ALGORITHMS FOR PROCESS SIMULATION; 1.4.1 Sequential Modular Approach; 1.4.2 Equation-Oriented Approach; 1.5 INCORPORATION OF PROCESS SYNTHESIS MODEL AND SEQUENTIAL MODULAR APPROACH
- Example 1.1: n-Octane Production Example1.6 TEN GOOD HABITS FOR PROCESS SIMULATION; REFERENCES; 2
- Registration of New Components; 2.1 REGISTRATION OF HYPOTHETICAL COMPONENTS; 2.1.1 Hypothetical Component Registration With Aspen HYSYS; Example 2.1; 2.1.2 Hypothetical Component Registration With PRO/II; Example 2.2; 2.2 REGISTRATION OF CRUDE OIL; Example 2.3 Crude Oil Registration With Aspen HYSYS; Step 1: Characterization of Crude Assay; Step 2: Generate Pseudocomponents-Create Cut and Blend; Step 3: Install the Oil in the Flowsheet; Example 2.4 Crude Oil Registration in PRO/II; Exercise
- 3.3.2.3 Peng-Robinson3.3.2.4 Reducing the "Attractive Force"; 3.3.2.5 Increasing the "Attractive Force"; Example 3.1; 3.4 LIQUID VOLUMES (WALAS, 1985); 3.5 VISCOSITY AND OTHER PROPERTIES; 3.6 PHASE EQUILIBRIA; 3.6.1 Vapor Phase Correction; 3.6.2 Liquid Phase Corrections; 3.6.3 Bringing It All Together; 3.7 FLASH CALCULATIONS (SMITH ET AL.); 3.7.1 "MESH" Equations; 3.7.1.1 Material Balance; 3.7.1.2 Equilibrium; 3.7.1.3 Summation; 3.7.1.4 Heat Balance; 3.7.2 Bubble Point Flash; 3.7.2.1 Methodology; 3.7.3 Dew Point Flash; 3.7.4 Two-Phase Pressure-Temperature Flash; 3.7.5 Other Flash Routines
- 3.8 PHASE DIAGRAMS3.8.1 Pressure-Temperature Diagrams of Pure Components and Mixtures; 3.8.2 Retrograde Behavior; 3.9 CONCLUSIONS; EXERCISES; REFERENCES; FURTHER READING; 4
- Simulation of Recycle Streams; 4.1 TYPES OF RECYCLE STREAMS; 4.2 TIPS IN HANDLING RECYCLE STREAMS; 4.2.1 Analyze the Flowsheet; 4.2.2 Provide Estimates for Recycle Streams; 4.2.3 Simplify the Flowsheet; 4.2.4 Avoid Overspecifying Mass Balance; 4.2.5 Check for Trapped Material; 4.2.6 Increase Number of Iterations; 4.3 RECYCLE CONVERGENCE AND ACCELERATION TECHNIQUES; Example 4.1; EXERCISES; REFERENCES; 2
- UniSim Design
- 5
- Basics of Process Simulation With UniSim Design
11. Chemical engineering process simulation [2017]
- Book
- 1 online resource : illustrations.
- Front Cover; Chemical Engineering Process Simulation; Chemical Engineering Process Simulation; Copyright; Contents; List of Contributors; How to Use This Book; 1
- Basics of Process Simulation; 1
- Introduction to Process Simulation; 1.1 PROCESS DESIGN AND SIMULATION; 1.2 HISTORICAL PERSPECTIVE FOR PROCESS SIMULATION; 1.3 BASIC ARCHITECTURES FOR COMMERCIAL SOFTWARE; 1.4 BASIC ALGORITHMS FOR PROCESS SIMULATION; 1.4.1 Sequential Modular Approach; 1.4.2 Equation-Oriented Approach; 1.5 INCORPORATION OF PROCESS SYNTHESIS MODEL AND SEQUENTIAL MODULAR APPROACH
- Example 1.1: n-Octane Production Example1.6 TEN GOOD HABITS FOR PROCESS SIMULATION; REFERENCES; 2
- Registration of New Components; 2.1 REGISTRATION OF HYPOTHETICAL COMPONENTS; 2.1.1 Hypothetical Component Registration With Aspen HYSYS; Example 2.1; 2.1.2 Hypothetical Component Registration With PRO/II; Example 2.2; 2.2 REGISTRATION OF CRUDE OIL; Example 2.3 Crude Oil Registration With Aspen HYSYS; Step 1: Characterization of Crude Assay; Step 2: Generate Pseudocomponents-Create Cut and Blend; Step 3: Install the Oil in the Flowsheet; Example 2.4 Crude Oil Registration in PRO/II; Exercise
- 3.3.2.3 Peng-Robinson3.3.2.4 Reducing the "Attractive Force"; 3.3.2.5 Increasing the "Attractive Force"; Example 3.1; 3.4 LIQUID VOLUMES (WALAS, 1985); 3.5 VISCOSITY AND OTHER PROPERTIES; 3.6 PHASE EQUILIBRIA; 3.6.1 Vapor Phase Correction; 3.6.2 Liquid Phase Corrections; 3.6.3 Bringing It All Together; 3.7 FLASH CALCULATIONS (SMITH ET AL.); 3.7.1 "MESH" Equations; 3.7.1.1 Material Balance; 3.7.1.2 Equilibrium; 3.7.1.3 Summation; 3.7.1.4 Heat Balance; 3.7.2 Bubble Point Flash; 3.7.2.1 Methodology; 3.7.3 Dew Point Flash; 3.7.4 Two-Phase Pressure-Temperature Flash; 3.7.5 Other Flash Routines
- 3.8 PHASE DIAGRAMS3.8.1 Pressure-Temperature Diagrams of Pure Components and Mixtures; 3.8.2 Retrograde Behavior; 3.9 CONCLUSIONS; EXERCISES; REFERENCES; FURTHER READING; 4
- Simulation of Recycle Streams; 4.1 TYPES OF RECYCLE STREAMS; 4.2 TIPS IN HANDLING RECYCLE STREAMS; 4.2.1 Analyze the Flowsheet; 4.2.2 Provide Estimates for Recycle Streams; 4.2.3 Simplify the Flowsheet; 4.2.4 Avoid Overspecifying Mass Balance; 4.2.5 Check for Trapped Material; 4.2.6 Increase Number of Iterations; 4.3 RECYCLE CONVERGENCE AND ACCELERATION TECHNIQUES; Example 4.1; EXERCISES; REFERENCES; 2
- UniSim Design
- 5
- Basics of Process Simulation With UniSim Design
- Front Cover; Chemical Engineering Process Simulation; Chemical Engineering Process Simulation; Copyright; Contents; List of Contributors; How to Use This Book; 1
- Basics of Process Simulation; 1
- Introduction to Process Simulation; 1.1 PROCESS DESIGN AND SIMULATION; 1.2 HISTORICAL PERSPECTIVE FOR PROCESS SIMULATION; 1.3 BASIC ARCHITECTURES FOR COMMERCIAL SOFTWARE; 1.4 BASIC ALGORITHMS FOR PROCESS SIMULATION; 1.4.1 Sequential Modular Approach; 1.4.2 Equation-Oriented Approach; 1.5 INCORPORATION OF PROCESS SYNTHESIS MODEL AND SEQUENTIAL MODULAR APPROACH
- Example 1.1: n-Octane Production Example1.6 TEN GOOD HABITS FOR PROCESS SIMULATION; REFERENCES; 2
- Registration of New Components; 2.1 REGISTRATION OF HYPOTHETICAL COMPONENTS; 2.1.1 Hypothetical Component Registration With Aspen HYSYS; Example 2.1; 2.1.2 Hypothetical Component Registration With PRO/II; Example 2.2; 2.2 REGISTRATION OF CRUDE OIL; Example 2.3 Crude Oil Registration With Aspen HYSYS; Step 1: Characterization of Crude Assay; Step 2: Generate Pseudocomponents-Create Cut and Blend; Step 3: Install the Oil in the Flowsheet; Example 2.4 Crude Oil Registration in PRO/II; Exercise
- 3.3.2.3 Peng-Robinson3.3.2.4 Reducing the "Attractive Force"; 3.3.2.5 Increasing the "Attractive Force"; Example 3.1; 3.4 LIQUID VOLUMES (WALAS, 1985); 3.5 VISCOSITY AND OTHER PROPERTIES; 3.6 PHASE EQUILIBRIA; 3.6.1 Vapor Phase Correction; 3.6.2 Liquid Phase Corrections; 3.6.3 Bringing It All Together; 3.7 FLASH CALCULATIONS (SMITH ET AL.); 3.7.1 "MESH" Equations; 3.7.1.1 Material Balance; 3.7.1.2 Equilibrium; 3.7.1.3 Summation; 3.7.1.4 Heat Balance; 3.7.2 Bubble Point Flash; 3.7.2.1 Methodology; 3.7.3 Dew Point Flash; 3.7.4 Two-Phase Pressure-Temperature Flash; 3.7.5 Other Flash Routines
- 3.8 PHASE DIAGRAMS3.8.1 Pressure-Temperature Diagrams of Pure Components and Mixtures; 3.8.2 Retrograde Behavior; 3.9 CONCLUSIONS; EXERCISES; REFERENCES; FURTHER READING; 4
- Simulation of Recycle Streams; 4.1 TYPES OF RECYCLE STREAMS; 4.2 TIPS IN HANDLING RECYCLE STREAMS; 4.2.1 Analyze the Flowsheet; 4.2.2 Provide Estimates for Recycle Streams; 4.2.3 Simplify the Flowsheet; 4.2.4 Avoid Overspecifying Mass Balance; 4.2.5 Check for Trapped Material; 4.2.6 Increase Number of Iterations; 4.3 RECYCLE CONVERGENCE AND ACCELERATION TECHNIQUES; Example 4.1; EXERCISES; REFERENCES; 2
- UniSim Design
- 5
- Basics of Process Simulation With UniSim Design
- Book
- 1 online resource.
- Preface; Acknowledgements; Contents; Dynamic Chemical Processes on Metals; 1 Introduction; Abstract; References; 2 Surface Structures and the Crystal Habit of Growing Particles; Abstract; References; 3 Self-Assembled Array of Atoms and Molecules on Metals; Abstract; References; 4 Formation of Quasi-Compounds on Metals; Abstract; References; 5 Reaction of Quasi-Compounds on Metal Surfaces; Abstract; References; 6 Formation of Labile Surface Compounds and Catalysis; Abstract; References; Dynamics of Chemical Reactions in Catalysis; 7 Overview of Catalysis; Abstract; References
- 8 Spatial Distribution of Molecules Desorbing with Surface ReactionAbstract; References; 9 Formation of Active Ordered Layer on Pt-Rh Catalyst; Abstract; References; 10 Dynamic Chemical Processes in Catalysis; Abstract; 10.1 Isomerization Reaction of Olefins; 10.2 Hydrogenation Reaction of Olefins; 10.3 Metathesis Reaction of Olefins; 10.4 Selective Oxidation of CO Improved by H2O; 10.5 Roles of Promoting Materials in Catalysis; References; 11 Concluding Remarks; Abstract
- Preface; Acknowledgements; Contents; Dynamic Chemical Processes on Metals; 1 Introduction; Abstract; References; 2 Surface Structures and the Crystal Habit of Growing Particles; Abstract; References; 3 Self-Assembled Array of Atoms and Molecules on Metals; Abstract; References; 4 Formation of Quasi-Compounds on Metals; Abstract; References; 5 Reaction of Quasi-Compounds on Metal Surfaces; Abstract; References; 6 Formation of Labile Surface Compounds and Catalysis; Abstract; References; Dynamics of Chemical Reactions in Catalysis; 7 Overview of Catalysis; Abstract; References
- 8 Spatial Distribution of Molecules Desorbing with Surface ReactionAbstract; References; 9 Formation of Active Ordered Layer on Pt-Rh Catalyst; Abstract; References; 10 Dynamic Chemical Processes in Catalysis; Abstract; 10.1 Isomerization Reaction of Olefins; 10.2 Hydrogenation Reaction of Olefins; 10.3 Metathesis Reaction of Olefins; 10.4 Selective Oxidation of CO Improved by H2O; 10.5 Roles of Promoting Materials in Catalysis; References; 11 Concluding Remarks; Abstract
EBSCOhost Access limited to 1 user
- EBSCOhost Access limited to 1 user
- Google Books (Full view)
14. Fluid mechanics for chemical engineers : with microfluids, CFD, and COMSOL multiphysics 5 [2017]
- Book
- 1 online resource (1 volume) : illustrations.
- Preface Part I: Macroscopic Fluid Mechanics Chapter 1: Introduction to Fluid Mechanics Chapter 2: Mass, Energy, and Momentum Balances Chapter 3: Fluid Friction in Pipes Chapter 4: Flow in Chemical Engineering Equipment Part II: Microscopic Fluid Mechanics Chapter 5: Differential Equations of Fluid Mechanics Chapter 6: Solution of Viscous-Flow Problems Chapter 7: Laplace's Equation, Irrotational and Porous-Media Flows Chapter 8: Boundary-Layer and Other Nearly Unidirectional Flows Chapter 9: Turbulent Flow Chapter 10: Bubble Motion, Two-Phase Flow, and Fluidization Chapter 11: Non-Newtonian Fluids Chapter 12: Microfluidics and Electrokinetic Flow Effects Chapter 13: An Introduction to Computational Fluid Dynamics and ANSYS Fluent Chapter 14: COMSOL Multiphysics for Solving Fluid Mechanics Problems Appendix A: Useful Mathematical Relationships Appendix B: Answers to the True/False Assertions Appendix C: Some Vector and Tensor Operations General Index COMSOL Multiphysics Index The Authors.
- (source: Nielsen Book Data)9780134712826 20171017
(source: Nielsen Book Data)9780134712826 20171017
- Preface Part I: Macroscopic Fluid Mechanics Chapter 1: Introduction to Fluid Mechanics Chapter 2: Mass, Energy, and Momentum Balances Chapter 3: Fluid Friction in Pipes Chapter 4: Flow in Chemical Engineering Equipment Part II: Microscopic Fluid Mechanics Chapter 5: Differential Equations of Fluid Mechanics Chapter 6: Solution of Viscous-Flow Problems Chapter 7: Laplace's Equation, Irrotational and Porous-Media Flows Chapter 8: Boundary-Layer and Other Nearly Unidirectional Flows Chapter 9: Turbulent Flow Chapter 10: Bubble Motion, Two-Phase Flow, and Fluidization Chapter 11: Non-Newtonian Fluids Chapter 12: Microfluidics and Electrokinetic Flow Effects Chapter 13: An Introduction to Computational Fluid Dynamics and ANSYS Fluent Chapter 14: COMSOL Multiphysics for Solving Fluid Mechanics Problems Appendix A: Useful Mathematical Relationships Appendix B: Answers to the True/False Assertions Appendix C: Some Vector and Tensor Operations General Index COMSOL Multiphysics Index The Authors.
- (source: Nielsen Book Data)9780134712826 20171017
(source: Nielsen Book Data)9780134712826 20171017
- Book
- xxxiv, 607 pages : illustrations ; 25 cm
- List of Figures Xi List of Tables Xvii Abbreviations Xix Glossary Xxiii 1 Process Safety and Safe Automation 1 1.1 Objective 7 1.2 Scope 9 1.3 Limitations 9 1.4 Target Audience 11 1.5 Incidents That Define Safe Automation 13 1.6 Overview of the Contents 18 1.7 Key Differences 21 2 The Role of Automation in Process Safety 23 2.1 Process Operations 23 2.2 Plant Automation 33 2.3 A Framework for Process Safety 42 2.4 Risk-Based Design 54 2.5 Risk Management of Existing Facility 78 3 Automation Specification 83 3.1 Process Automation Lifecycle 83 3.2 Functional Specification 91 3.3 Designing For Operating Objectives 92 3.4 Inherently Safer Practices 104 3.5 Designing for Core Attributes 107 3.6 Control and Safety System Integration 133 4 Design And Implementation Of Process Control Systems 153 4.1 Input and Output Field Signal Types 161 4.2 Basic Application Program Functions 162 4.3 Process Control Objectives 165 4.4 Process Controller Technology Selection 172 4.5 Detailed Application Program Design 194 5 Design and Implementation of Safety Controls, Alarms, and Interlocks (SCAI) 211 5.1 SCAI Classification 215 5.2 Design Considerations 220 5.3 SCAI Technology Selection 244 6 Administrative Controls and Monitoring 265 6.1 Introduction 265 6.2 Automation Organization Management 266 6.3 Process Safety Information 269 6.4 Operating Procedures 273 6.5 Maintenance Planning 291 6.6 Human and Systematic Failure Management 303 6.7 Management of Change 316 6.8 Auditing, Monitoring and Metrics 321 Appendix A. Control System Considerations 329 Appendix B. Power, Grounding, and Shielding 371 Appendix C. Communications 391 C.1 Communication Classifications 391 C.2 Common Communication Network Topologies 395 C.3 Communication between Devices 397 C.4 Wireless Communication 400 C.5 Common Communication Configurations 403 C.6 Common Data Communication Issues 407 C.7 Process Control and Safety System Communications 412 C.8 SCAI Communications 419 Appendix D. Alarm Management 423 D.1 Alarms 423 D.2 Standards and Resources 423 D.3 Alarm Management 423 D.4 Managing the Safety Aspects Of Alarms 436 D.5 Alarm System Performance Benchmarking 437 D.6 Alarm Management Software 438 Appendix E. Field Device Considerations 441 E.1 General Signal Safety 441 E.2 Field Device Selection 458 E.3 Flow Measurement 465 E.4 Pressure Measurement 475 E.5 Level Measurement 476 E.6 Temperature Measurement 487 E.7 On-Stream Process Analysis 489 E.8 Automated Valves 493 E.9 Electric Motors 504 E.10 Steam Turbine Variable Speed Drives 505 Appendix F. Sis Equipment Selection 511 F.1 Selection Basis 511 F.2 Additional Considerations 518 Appendix G. Human Machine Interface Design 529 G.1 General 529 G.2 Operator Interface Standards and Resources 531 G.3 Instrument Panels 533 G.4 Configurable Operator Workstations 534 G.5 Process Alarms 538 G.6 Sis Impact on HMI 545 G.7 Control-Center Environment 545 G.8 Video 546 G.9 Operator Interfaces Of Future 546 G.10 HMI Considerations Checklist 547 Appendix H. Application Programming 551 H.1 Software Types 551 H.2 Application Program Development 552 H.3 Application Programming Languages 554 H.4 Application Program Developmental Models 556 H.5 Process Control Application Program 557 H.6 SCAI Application Program 563 Appendix I. Instrument Reliability Program 565 I.1 Introduction 565 I.2 Tracking Failure 566 I.3 Data Taxonomy 568 I.4 Data Collection Efforts 569 I.5 Failure Investigation 571 I.6 Calculation of Failure Rate 572 I.7 Verification 576 Appendix J. Acceptance Testing Guidelines 581 J.1 Acceptance Testing 581 J.2 Standards 581 J.3 Factory Acceptance Test 582 J.4 Site Acceptance Test (SAT) 589 Index 597.
- (source: Nielsen Book Data)9781118949498 20170213
(source: Nielsen Book Data)9781118949498 20170213
- List of Figures Xi List of Tables Xvii Abbreviations Xix Glossary Xxiii 1 Process Safety and Safe Automation 1 1.1 Objective 7 1.2 Scope 9 1.3 Limitations 9 1.4 Target Audience 11 1.5 Incidents That Define Safe Automation 13 1.6 Overview of the Contents 18 1.7 Key Differences 21 2 The Role of Automation in Process Safety 23 2.1 Process Operations 23 2.2 Plant Automation 33 2.3 A Framework for Process Safety 42 2.4 Risk-Based Design 54 2.5 Risk Management of Existing Facility 78 3 Automation Specification 83 3.1 Process Automation Lifecycle 83 3.2 Functional Specification 91 3.3 Designing For Operating Objectives 92 3.4 Inherently Safer Practices 104 3.5 Designing for Core Attributes 107 3.6 Control and Safety System Integration 133 4 Design And Implementation Of Process Control Systems 153 4.1 Input and Output Field Signal Types 161 4.2 Basic Application Program Functions 162 4.3 Process Control Objectives 165 4.4 Process Controller Technology Selection 172 4.5 Detailed Application Program Design 194 5 Design and Implementation of Safety Controls, Alarms, and Interlocks (SCAI) 211 5.1 SCAI Classification 215 5.2 Design Considerations 220 5.3 SCAI Technology Selection 244 6 Administrative Controls and Monitoring 265 6.1 Introduction 265 6.2 Automation Organization Management 266 6.3 Process Safety Information 269 6.4 Operating Procedures 273 6.5 Maintenance Planning 291 6.6 Human and Systematic Failure Management 303 6.7 Management of Change 316 6.8 Auditing, Monitoring and Metrics 321 Appendix A. Control System Considerations 329 Appendix B. Power, Grounding, and Shielding 371 Appendix C. Communications 391 C.1 Communication Classifications 391 C.2 Common Communication Network Topologies 395 C.3 Communication between Devices 397 C.4 Wireless Communication 400 C.5 Common Communication Configurations 403 C.6 Common Data Communication Issues 407 C.7 Process Control and Safety System Communications 412 C.8 SCAI Communications 419 Appendix D. Alarm Management 423 D.1 Alarms 423 D.2 Standards and Resources 423 D.3 Alarm Management 423 D.4 Managing the Safety Aspects Of Alarms 436 D.5 Alarm System Performance Benchmarking 437 D.6 Alarm Management Software 438 Appendix E. Field Device Considerations 441 E.1 General Signal Safety 441 E.2 Field Device Selection 458 E.3 Flow Measurement 465 E.4 Pressure Measurement 475 E.5 Level Measurement 476 E.6 Temperature Measurement 487 E.7 On-Stream Process Analysis 489 E.8 Automated Valves 493 E.9 Electric Motors 504 E.10 Steam Turbine Variable Speed Drives 505 Appendix F. Sis Equipment Selection 511 F.1 Selection Basis 511 F.2 Additional Considerations 518 Appendix G. Human Machine Interface Design 529 G.1 General 529 G.2 Operator Interface Standards and Resources 531 G.3 Instrument Panels 533 G.4 Configurable Operator Workstations 534 G.5 Process Alarms 538 G.6 Sis Impact on HMI 545 G.7 Control-Center Environment 545 G.8 Video 546 G.9 Operator Interfaces Of Future 546 G.10 HMI Considerations Checklist 547 Appendix H. Application Programming 551 H.1 Software Types 551 H.2 Application Program Development 552 H.3 Application Programming Languages 554 H.4 Application Program Developmental Models 556 H.5 Process Control Application Program 557 H.6 SCAI Application Program 563 Appendix I. Instrument Reliability Program 565 I.1 Introduction 565 I.2 Tracking Failure 566 I.3 Data Taxonomy 568 I.4 Data Collection Efforts 569 I.5 Failure Investigation 571 I.6 Calculation of Failure Rate 572 I.7 Verification 576 Appendix J. Acceptance Testing Guidelines 581 J.1 Acceptance Testing 581 J.2 Standards 581 J.3 Factory Acceptance Test 582 J.4 Site Acceptance Test (SAT) 589 Index 597.
- (source: Nielsen Book Data)9781118949498 20170213
(source: Nielsen Book Data)9781118949498 20170213
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Safety Collection | |
TP155.7 .G85 2017 | In-library use |
- Book
- 1 online resource ( ix, 285 pages) : illustrations (some color).
- Recent Advances in Rare Earth Metal Asymmetric Catalysis Toward Practical Synthesis of Therapeutics.- Metal Catalyzed Synthetic Reactions via Aerobic Oxidation as a Key Step.- Heterogeneous Platinum Metal Catalyzed Deuterium Generation and Labeling Methods Using Hydrogen Gas and Deuterium Oxide as Key Reagents.- Pd on Spherical Carbon (Pd/SC)-Catalyzed Chemoselective Hydrogenation.- Environment-Friendly Iron-Catalyzed Reactions.- Tetranuclear Zinc Cluster-Catalyzed Transesterification.- Vinyl Ruthenium Carbenes: Valuable Intermediates in Catalysis.- Radical-based Late Stage C-H Functionalization of Heteroaromatics in Drug Discovery.- Magnetic Nanoparticle-Supported Iodoarene Oxidative Catalyst and its Application to Phenol Oxidation.- Recent Development of Diphenyl Phosphorazidate (DPPA) as a Synthetic Reagent.- Methylenation Reaction of Carbonyl Compounds Using Julia-Kocienski Reagents.- Development of Shelf-stable Reagents for Electrophilic Trifluoromethylthiolation Reaction.- Practical and Environmentally Friendly Transformation of Tetrahydrofuran-2-methanols to gamma-Lactones via Oxidative Cleavage.- Five Step Asymmetric Total Synthesis of ss-Lycorane Employing Chiral Diether Ligand-controlled Conjugate Addition-Michael Reaction Cascade.- Concise Synthesis of Peptide Analogs Using a Fluorous-Fmoc Protection Strategy.- A Challenging Synthesis of the Highly Functionalized Echinocandin ASP9726: A Successor of Micafungin - How Can We Achieve the Large-Scale Synthesis?- The Role of Silyl Protecting Group for the Synthesis of Procyanidins and Their Derivatives.- Chemical Modification of the 3'-Dangling End of Small Interfering RNAs such as siRNAs and miRNAs: the Development of miRNA Replacement Therapy.- Antiviral Agents towards Chikungunya Virus: Structures, Syntheses, and Isolation from Natural Sources.- Analytical Standards Purity Determination Using Quantitative Nuclear Magnetic Resonance.
- (source: Nielsen Book Data)9789811034206 20170515
(source: Nielsen Book Data)9789811034206 20170515
- Recent Advances in Rare Earth Metal Asymmetric Catalysis Toward Practical Synthesis of Therapeutics.- Metal Catalyzed Synthetic Reactions via Aerobic Oxidation as a Key Step.- Heterogeneous Platinum Metal Catalyzed Deuterium Generation and Labeling Methods Using Hydrogen Gas and Deuterium Oxide as Key Reagents.- Pd on Spherical Carbon (Pd/SC)-Catalyzed Chemoselective Hydrogenation.- Environment-Friendly Iron-Catalyzed Reactions.- Tetranuclear Zinc Cluster-Catalyzed Transesterification.- Vinyl Ruthenium Carbenes: Valuable Intermediates in Catalysis.- Radical-based Late Stage C-H Functionalization of Heteroaromatics in Drug Discovery.- Magnetic Nanoparticle-Supported Iodoarene Oxidative Catalyst and its Application to Phenol Oxidation.- Recent Development of Diphenyl Phosphorazidate (DPPA) as a Synthetic Reagent.- Methylenation Reaction of Carbonyl Compounds Using Julia-Kocienski Reagents.- Development of Shelf-stable Reagents for Electrophilic Trifluoromethylthiolation Reaction.- Practical and Environmentally Friendly Transformation of Tetrahydrofuran-2-methanols to gamma-Lactones via Oxidative Cleavage.- Five Step Asymmetric Total Synthesis of ss-Lycorane Employing Chiral Diether Ligand-controlled Conjugate Addition-Michael Reaction Cascade.- Concise Synthesis of Peptide Analogs Using a Fluorous-Fmoc Protection Strategy.- A Challenging Synthesis of the Highly Functionalized Echinocandin ASP9726: A Successor of Micafungin - How Can We Achieve the Large-Scale Synthesis?- The Role of Silyl Protecting Group for the Synthesis of Procyanidins and Their Derivatives.- Chemical Modification of the 3'-Dangling End of Small Interfering RNAs such as siRNAs and miRNAs: the Development of miRNA Replacement Therapy.- Antiviral Agents towards Chikungunya Virus: Structures, Syntheses, and Isolation from Natural Sources.- Analytical Standards Purity Determination Using Quantitative Nuclear Magnetic Resonance.
- (source: Nielsen Book Data)9789811034206 20170515
(source: Nielsen Book Data)9789811034206 20170515
EBSCOhost Access limited to 1 user
- EBSCOhost Access limited to 1 user
- Google Books (Full view)
17. Process dynamics and control [2017]
- Book
- ix, 502 pages : illustrations ; 25 cm
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Stacks | |
TP155.75 .S43 2017 | Unknown |
- Book
- 1 online resource.
- Preface xiii Notation xv 1 Introduction 1 1.1 System 1 1.1.1 Uniform System 2 1.1.2 Properties of System 2 1.1.3 Classification of System 3 1.1.4 Model 3 1.2 Process 3 1.2.1 Classification of Processes 4 1.2.2 Process Model 5 1.3 Process Modeling 6 1.3.1 Relations 7 1.3.2 Assumptions 7 1.3.3 Variables and Parameters 8 1.4 Process Simulation 9 1.4.1 Utility 9 1.4.2 Simulation Methods 10 1.5 Development of Process Model 11 1.6 Learning about Process 13 1.7 System Specification 14 Bibliography 16 Exercises 16 2 Fundamental Relations 17 2.1 Basic Form 17 2.1.1 Application 19 2.2 Mass Balance 21 2.2.1 Microscopic Balances 21 2.2.2 Equation of Change for Mass Fraction 23 2.3 Mole Balance 24 2.3.1 Microscopic Balances 24 2.3.2 Equation of Change for Mole Fraction 25 2.4 Momentum Balance 26 2.4.1 Convective Momentum Flux 27 2.4.2 Total Momentum Flux 28 2.4.3 Macroscopic Balance 29 2.4.4 Microscopic Balance 31 2.5 Energy Balance 33 2.5.1 Microscopic Balance 33 2.5.2 Macroscopic Balance 35 2.6 Equation of Change for Kinetic and Potential Energy 38 2.6.1 Microscopic Equation 38 2.6.2 Macroscopic Equation 40 2.7 Equation of Change for Temperature 41 2.7.1 Microscopic Equation 41 2.7.2 Macroscopic Equation 42 2.A Enthalpy Change from Thermodynamics 44 2.B Divergence Theorem 48 2.C General Transport Theorem 50 2.D Equations in Cartesian, Cylindrical and Spherical Coordinate Systems 53 2.D.1 Equations of Continuity 54 2.D.2 Equations of Continuity for Individual Species 54 2.D.3 Equations of Motion 55 2.D.4 Equations of Change for Temperature 56 Bibliography 57 Exercises 57 3 Constitutive Relations 59 3.1 Diffusion 59 3.1.1 Multicomponent Mixtures 60 3.2 Viscous Motion 60 3.2.1 Newtonian Fluids 61 3.2.2 Non-Newtonian Fluids 62 3.3 Thermal Conduction 63 3.4 Chemical Reaction 63 3.5 Rate of Reaction 65 3.5.1 Equations of Change for Moles 66 3.5.2 Equations of Change for Temperature 67 3.5.3 Macroscopic Equation of Change for Temperature 69 3.6 Interphase Transfer 71 3.7 Thermodynamic Relations 72 3.A Equations in Cartesian, Cylindrical and Spherical Coordinate Systems 74 3.A.1 Equations of Continuity for Binary Systems 74 3.A.2 Equations of Motion for Newtonian Fluids 75 3.A.3 Equations of Change for Temperature 76 References 77 Bibliography 77 Exercises 78 4 Model Formulation 79 4.1 Lumped-Parameter Systems 80 4.1.1 Isothermal CSTR 80 4.1.2 Flow through Eccentric Reducer 83 4.1.3 Liquid Preheater 84 4.1.4 Non-Isothermal CSTR 87 4.2 Distributed-Parameter Systems 90 4.2.1 Nicotine Patch 90 4.2.2 Fluid Flow between Inclined Parallel Plates 93 4.2.3 Tapered Fin 96 4.2.4 Continuous Microchannel Reactor 99 4.2.5 Oxygen Transport to Tissues 103 4.2.6 Dermal Heat Transfer in Cylindrical Limb 106 4.2.7 Solvent Induced Heavy Oil Recovery 108 4.2.8 Hydrogel Tablet 112 4.2.9 Neutron Diffusion 117 4.2.10 Horton Sphere 119 4.2.11 Reactions around Solid Reactant 122 4.3 Fluxes along Non-Linear Directions 127 4.3.1 Saccadic Movement of an Eye 128 4.A Initial and Boundary Conditions 131 4.A.1 Initial Condition 131 4.A.2 Boundary Condition 131 4.A.3 Periodic Condition 132 4.B Zero Derivative at the Point of Symmetry 133 4.C Equation of Motion along the Radial Direction in Cylindrical Coordinates 134 References 137 Exercises 137 5 Model Transformation 139 5.1 Transformation between Orthogonal Coordinate Systems 139 5.1.1 Scale Factors 139 5.1.2 Differential Elements 142 5.1.3 Vector Representation 143 5.1.4 Derivatives of Unit Vectors 144 5.1.5 Differential Operators 146 5.2 Transformation between Arbitrary Coordinate Systems 155 5.2.1 Transformation of Velocity 155 5.2.2 Transformation of Spatial Derivatives 156 5.2.3 Correctness of Transformation Matrices 156 5.3 Laplace Transformation 161 5.3.1 Examples 162 5.3.2 Properties of Laplace Transforms 164 5.3.3 Solution of Linear Differential Equations 168 5.4 Miscellaneous Transformations 178 5.4.1 Higher Order Derivatives 178 5.4.2 Scaling 178 5.4.3 Change of Independent Variable 179 5.4.4 Semi-Infinite Domain 179 5.4.5 Non-Autonomous to Autonomous Differential Equation 180 5.A Differential Operators in an Orthogonal Coordinate System 180 5.A.1 Gradient of a Scalar 180 5.A.2 Divergence of a Vector 181 5.A.3 Laplacian of a Scalar 184 5.A.4 Curl of a Vector 184 References 186 Bibliography 186 Exercises 186 6 Model Simplification and Approximation 189 6.1 Model Simplification 189 6.1.1 Scaling and Ordering Analysis 190 6.1.2 Linearization 193 6.2 Model Approximation 200 6.2.1 Dimensional Analysis 201 6.2.2 Model Fitting 204 6.A Linear Function 220 6.B Proof of Buckingham Pi Theorem 221 6.C Newton's Optimization Method 223 References 224 Bibliography 224 Exercises 225 7 Process Simulation 227 7.1 Algebraic Equations 227 7.1.1 Linear Algebraic Equations 227 7.1.2 Non-Linear Algebraic Equations 236 7.2 Differential Equations 241 7.2.1 Ordinary Differential Equations 242 7.2.2 Explicit Runge Kutta Methods 242 7.2.3 Step-Size Control 246 7.2.4 Stiff Equations 247 7.3 Partial Differential Equations 253 7.3.1 Finite Difference Method 255 7.4 Differential Equations with Split Boundaries 263 7.4.1 Shooting Newton Raphson Method 264 7.5 Periodic Differential Equations 268 7.5.1 Shooting Newton Raphson Method 268 7.6 Programming of Derivatives 271 7.7 Miscellanea 274 7.7.1 Integration of Discrete Data 274 7.7.2 Roots of a Single Algebraic Equation 276 7.7.3 Cubic Equations 278 7.A Partial Pivoting for Matrix Inverse 281 7.B Derivation of Newton Raphson Method 281 7.B.1 Quadratic Convergence 282 7.C General Derivation of Finite Difference Formulas 284 7.C.1 First Derivative, Centered Second Order Formula 285 7.C.2 Second Derivative, Forward Second Order Formula 286 7.C.3 Third Derivative, Mixed Fourth Order Formula 287 7.C.4 Common Finite Difference Formulas 289 References 291 Bibliography 291 Exercises 291 8 Mathematical Review 295 8.1 Order of Magnitude 295 8.2 Big-O Notation 295 8.3 Analytical Function 295 8.4 Vectors 296 8.4.1 Vector Operations 297 8.4.2 Cauchy Schwarz Inequality 302 8.5 Matrices 302 8.5.1 Terminology 303 8.5.2 Matrix Operations 304 8.5.3 Operator Inequality 305 8.6 Tensors 306 8.6.1 Multilinearity 306 8.6.2 Coordinate-Independence 306 8.6.3 Representation of Second Order Tensor 307 8.6.4 Einstein or Index Notation 308 8.6.5 Kronecker Delta 310 8.6.6 Operations Involving Vectors and Second Order Tensors 310 8.7 Differential 318 8.7.1 Derivative 318 8.7.2 Partial Derivative and Differential 318 8.7.3 Chain Rule of Differentiation 319 8.7.4 Material and Total Derivatives 321 8.8 Taylor Series 322 8.8.1 Multivariable Taylor Series 323 8.8.2 First Order Taylor Expansion 323 8.9 L'Hopital's Rule 326 8.10 Leibniz's Rule 326 8.11 Integration by Parts 327 8.12 Euler s Formulas 327 8.13 Solution of Linear Ordinary Differential Equations 327 8.13.1 Single First Order Equation 327 8.13.2 Simultaneous First Order Equations 328 Bibliography 332 Index 333.
- (source: Nielsen Book Data)9781118914687 20170424
(source: Nielsen Book Data)9781118914687 20170424
- Preface xiii Notation xv 1 Introduction 1 1.1 System 1 1.1.1 Uniform System 2 1.1.2 Properties of System 2 1.1.3 Classification of System 3 1.1.4 Model 3 1.2 Process 3 1.2.1 Classification of Processes 4 1.2.2 Process Model 5 1.3 Process Modeling 6 1.3.1 Relations 7 1.3.2 Assumptions 7 1.3.3 Variables and Parameters 8 1.4 Process Simulation 9 1.4.1 Utility 9 1.4.2 Simulation Methods 10 1.5 Development of Process Model 11 1.6 Learning about Process 13 1.7 System Specification 14 Bibliography 16 Exercises 16 2 Fundamental Relations 17 2.1 Basic Form 17 2.1.1 Application 19 2.2 Mass Balance 21 2.2.1 Microscopic Balances 21 2.2.2 Equation of Change for Mass Fraction 23 2.3 Mole Balance 24 2.3.1 Microscopic Balances 24 2.3.2 Equation of Change for Mole Fraction 25 2.4 Momentum Balance 26 2.4.1 Convective Momentum Flux 27 2.4.2 Total Momentum Flux 28 2.4.3 Macroscopic Balance 29 2.4.4 Microscopic Balance 31 2.5 Energy Balance 33 2.5.1 Microscopic Balance 33 2.5.2 Macroscopic Balance 35 2.6 Equation of Change for Kinetic and Potential Energy 38 2.6.1 Microscopic Equation 38 2.6.2 Macroscopic Equation 40 2.7 Equation of Change for Temperature 41 2.7.1 Microscopic Equation 41 2.7.2 Macroscopic Equation 42 2.A Enthalpy Change from Thermodynamics 44 2.B Divergence Theorem 48 2.C General Transport Theorem 50 2.D Equations in Cartesian, Cylindrical and Spherical Coordinate Systems 53 2.D.1 Equations of Continuity 54 2.D.2 Equations of Continuity for Individual Species 54 2.D.3 Equations of Motion 55 2.D.4 Equations of Change for Temperature 56 Bibliography 57 Exercises 57 3 Constitutive Relations 59 3.1 Diffusion 59 3.1.1 Multicomponent Mixtures 60 3.2 Viscous Motion 60 3.2.1 Newtonian Fluids 61 3.2.2 Non-Newtonian Fluids 62 3.3 Thermal Conduction 63 3.4 Chemical Reaction 63 3.5 Rate of Reaction 65 3.5.1 Equations of Change for Moles 66 3.5.2 Equations of Change for Temperature 67 3.5.3 Macroscopic Equation of Change for Temperature 69 3.6 Interphase Transfer 71 3.7 Thermodynamic Relations 72 3.A Equations in Cartesian, Cylindrical and Spherical Coordinate Systems 74 3.A.1 Equations of Continuity for Binary Systems 74 3.A.2 Equations of Motion for Newtonian Fluids 75 3.A.3 Equations of Change for Temperature 76 References 77 Bibliography 77 Exercises 78 4 Model Formulation 79 4.1 Lumped-Parameter Systems 80 4.1.1 Isothermal CSTR 80 4.1.2 Flow through Eccentric Reducer 83 4.1.3 Liquid Preheater 84 4.1.4 Non-Isothermal CSTR 87 4.2 Distributed-Parameter Systems 90 4.2.1 Nicotine Patch 90 4.2.2 Fluid Flow between Inclined Parallel Plates 93 4.2.3 Tapered Fin 96 4.2.4 Continuous Microchannel Reactor 99 4.2.5 Oxygen Transport to Tissues 103 4.2.6 Dermal Heat Transfer in Cylindrical Limb 106 4.2.7 Solvent Induced Heavy Oil Recovery 108 4.2.8 Hydrogel Tablet 112 4.2.9 Neutron Diffusion 117 4.2.10 Horton Sphere 119 4.2.11 Reactions around Solid Reactant 122 4.3 Fluxes along Non-Linear Directions 127 4.3.1 Saccadic Movement of an Eye 128 4.A Initial and Boundary Conditions 131 4.A.1 Initial Condition 131 4.A.2 Boundary Condition 131 4.A.3 Periodic Condition 132 4.B Zero Derivative at the Point of Symmetry 133 4.C Equation of Motion along the Radial Direction in Cylindrical Coordinates 134 References 137 Exercises 137 5 Model Transformation 139 5.1 Transformation between Orthogonal Coordinate Systems 139 5.1.1 Scale Factors 139 5.1.2 Differential Elements 142 5.1.3 Vector Representation 143 5.1.4 Derivatives of Unit Vectors 144 5.1.5 Differential Operators 146 5.2 Transformation between Arbitrary Coordinate Systems 155 5.2.1 Transformation of Velocity 155 5.2.2 Transformation of Spatial Derivatives 156 5.2.3 Correctness of Transformation Matrices 156 5.3 Laplace Transformation 161 5.3.1 Examples 162 5.3.2 Properties of Laplace Transforms 164 5.3.3 Solution of Linear Differential Equations 168 5.4 Miscellaneous Transformations 178 5.4.1 Higher Order Derivatives 178 5.4.2 Scaling 178 5.4.3 Change of Independent Variable 179 5.4.4 Semi-Infinite Domain 179 5.4.5 Non-Autonomous to Autonomous Differential Equation 180 5.A Differential Operators in an Orthogonal Coordinate System 180 5.A.1 Gradient of a Scalar 180 5.A.2 Divergence of a Vector 181 5.A.3 Laplacian of a Scalar 184 5.A.4 Curl of a Vector 184 References 186 Bibliography 186 Exercises 186 6 Model Simplification and Approximation 189 6.1 Model Simplification 189 6.1.1 Scaling and Ordering Analysis 190 6.1.2 Linearization 193 6.2 Model Approximation 200 6.2.1 Dimensional Analysis 201 6.2.2 Model Fitting 204 6.A Linear Function 220 6.B Proof of Buckingham Pi Theorem 221 6.C Newton's Optimization Method 223 References 224 Bibliography 224 Exercises 225 7 Process Simulation 227 7.1 Algebraic Equations 227 7.1.1 Linear Algebraic Equations 227 7.1.2 Non-Linear Algebraic Equations 236 7.2 Differential Equations 241 7.2.1 Ordinary Differential Equations 242 7.2.2 Explicit Runge Kutta Methods 242 7.2.3 Step-Size Control 246 7.2.4 Stiff Equations 247 7.3 Partial Differential Equations 253 7.3.1 Finite Difference Method 255 7.4 Differential Equations with Split Boundaries 263 7.4.1 Shooting Newton Raphson Method 264 7.5 Periodic Differential Equations 268 7.5.1 Shooting Newton Raphson Method 268 7.6 Programming of Derivatives 271 7.7 Miscellanea 274 7.7.1 Integration of Discrete Data 274 7.7.2 Roots of a Single Algebraic Equation 276 7.7.3 Cubic Equations 278 7.A Partial Pivoting for Matrix Inverse 281 7.B Derivation of Newton Raphson Method 281 7.B.1 Quadratic Convergence 282 7.C General Derivation of Finite Difference Formulas 284 7.C.1 First Derivative, Centered Second Order Formula 285 7.C.2 Second Derivative, Forward Second Order Formula 286 7.C.3 Third Derivative, Mixed Fourth Order Formula 287 7.C.4 Common Finite Difference Formulas 289 References 291 Bibliography 291 Exercises 291 8 Mathematical Review 295 8.1 Order of Magnitude 295 8.2 Big-O Notation 295 8.3 Analytical Function 295 8.4 Vectors 296 8.4.1 Vector Operations 297 8.4.2 Cauchy Schwarz Inequality 302 8.5 Matrices 302 8.5.1 Terminology 303 8.5.2 Matrix Operations 304 8.5.3 Operator Inequality 305 8.6 Tensors 306 8.6.1 Multilinearity 306 8.6.2 Coordinate-Independence 306 8.6.3 Representation of Second Order Tensor 307 8.6.4 Einstein or Index Notation 308 8.6.5 Kronecker Delta 310 8.6.6 Operations Involving Vectors and Second Order Tensors 310 8.7 Differential 318 8.7.1 Derivative 318 8.7.2 Partial Derivative and Differential 318 8.7.3 Chain Rule of Differentiation 319 8.7.4 Material and Total Derivatives 321 8.8 Taylor Series 322 8.8.1 Multivariable Taylor Series 323 8.8.2 First Order Taylor Expansion 323 8.9 L'Hopital's Rule 326 8.10 Leibniz's Rule 326 8.11 Integration by Parts 327 8.12 Euler s Formulas 327 8.13 Solution of Linear Ordinary Differential Equations 327 8.13.1 Single First Order Equation 327 8.13.2 Simultaneous First Order Equations 328 Bibliography 332 Index 333.
- (source: Nielsen Book Data)9781118914687 20170424
(source: Nielsen Book Data)9781118914687 20170424
- Book
- 1 online resource : text file, PDF
- Preface: A Different Approach Part I - Key Concepts of Process Safety * Introduction to Process Safety * Process Safety Culture, Leadership and Performance * Process Safety Systems * Operational Discipline Part II - Practical Approaches for Designing Safe Processes * Design Safe Processes * Identify and Assess Process Hazards * Evaluate and Manage Process Risks Part III - Practical Approaches for Implementing Process Safety * Operate Safe Processes * Maintain Process Integrity and Reliability * Change Processes Safely * Manage Incident Response and Investigation * Monitor Process Safety Program Effectiveness Part IV - Practical Approaches for Achieving Process Safety Excellence * Develop Personal Capability * Commit to a Safe Future Epilogue: Why Process Safety?
- (source: Nielsen Book Data)9781466565425 20171218
(source: Nielsen Book Data)9781466565425 20171218
- Preface: A Different Approach Part I - Key Concepts of Process Safety * Introduction to Process Safety * Process Safety Culture, Leadership and Performance * Process Safety Systems * Operational Discipline Part II - Practical Approaches for Designing Safe Processes * Design Safe Processes * Identify and Assess Process Hazards * Evaluate and Manage Process Risks Part III - Practical Approaches for Implementing Process Safety * Operate Safe Processes * Maintain Process Integrity and Reliability * Change Processes Safely * Manage Incident Response and Investigation * Monitor Process Safety Program Effectiveness Part IV - Practical Approaches for Achieving Process Safety Excellence * Develop Personal Capability * Commit to a Safe Future Epilogue: Why Process Safety?
- (source: Nielsen Book Data)9781466565425 20171218
(source: Nielsen Book Data)9781466565425 20171218
- Book
- 1 online resource.
- Part I: Production of Sugars (Chapter 1).- Part II: Production of Aldehydes (Chapters 2-4).- Part III: Production of Acids (Chapters 5-8).- Part IV: Production of Alcohols (Chapters 9-12).- Part V: Production of Lactones and Amino Acids (Chapters 13-14).
- (source: Nielsen Book Data)9789811041716 20170821
(source: Nielsen Book Data)9789811041716 20170821
- Part I: Production of Sugars (Chapter 1).- Part II: Production of Aldehydes (Chapters 2-4).- Part III: Production of Acids (Chapters 5-8).- Part IV: Production of Alcohols (Chapters 9-12).- Part V: Production of Lactones and Amino Acids (Chapters 13-14).
- (source: Nielsen Book Data)9789811041716 20170821
(source: Nielsen Book Data)9789811041716 20170821
ProQuest Ebook Central Access limited to 1 user
- ProQuest Ebook Central Access limited to 1 user
- Google Books (Full view)
Articles+
Journal articles, e-books, & other e-resources
- Articles+ results include