Book
1 online resource (xvi, 318 p.) : ill. (some col.). Digital: text file; PDF.
  • Electron-molecule cross sections and rates involving rotationally, vibrationally and electronically excited states.- Reactivity and relaxation of vibrationally/rotationally excited molecules with open shell atoms.- Formation of vibrationally and rotationally excited molecules during atom recombination on surfaces.- Collisional-radiative models for atomic plasmas.- Collisional-radiative models for molecular plasmas.- Kinetic and Monte Carlo approaches to solve Boltzmann equation for the electron energy distribution functions.- Non-equilibrium plasma kinetics under discharge and post-discharge conditions: coupling problems for low pressure and atmospheric cold plasmas.- Ion transport under strong fields.- PIC (Particle In Cell ) models for low-pressure plasmas.- Negative ion H- for fusion.- Non equilibrium plasma expansion through nozzles.
  • (source: Nielsen Book Data)
Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the book will assess fundamental concepts and theoretical formulations, based on a unified methodological approach, and explore the insight in related scientific problems still opened for the research community.
(source: Nielsen Book Data)
Book
1 online resource : illustrations.
  • The Second Order Ehrenfest Method A Practical CASSCF Approach to Coupled Electron-Nuclear Dynamics.- Anchoring the Potential Energy Surface for the Br + H2O --> HBr + OH Reaction.-Isaiah Shavitt - Computational Chemistry Pioneer.-Comparison of one-dimensional and quasi-one-dimensional Hubbard models from the variational two-electron reduced-density-matrix method.-Steric and electrostatic effects on photoisomerization dynamics using QM/MM ab initio multiple spawning.-Theoretical Studies of the Excited States of p-Cyanophenylalanine and Comparisons with the Natural Amino Acids Phenylalanine and Tyrosine.-Singlet-Triplet Separations of Di-radicals Treated by the DEA/DIP-EOM-CCSD Methods.- Performance of Density Functionals for Computation of Core Electron Binding Energies in First-row Hydrides and Glycine.- Why Edge Inversion? Theoretical Characterization of the Bonding in the Transition States for Inversion in FnNH(3-n) and FnPH(3-n) (n=0-3).-Wave Function Analysis with Shavitt Graph Density in the Graphically Contracted Function Method.- Aspects of Size-extensivity in Unitary Group Adapted Multi-Reference Coupled Cluster Theories:The Role of Cumulant Decomposition of Spin-free Reduced Density Matrices.- Biconfluent Heun equation in quantum chemistry: Harmonium and related systems.-Spin-Orbit DFT with Analytic Gradients and Applications to Heavy Element Compounds.-Construction of complex STO-NG basis sets by the method of least squares and their applications.-Massively Parallel Spin-Orbit Configuration Interaction.-A comparison of singlet and triplet states for one- and two- dimensional graphene nanoribbons using multireference theory.-Atomic Three- and Four-Body Recurrence Formulas and Related Summations.-Effects of the second hydration shell on excited-state multiple proton transfer: Dynamics simulations of 7-azaindole:(H2O)1-5 clusters in the gas phase.-Heats of formation of the amino acids re-examined by means of W1-F12 and W2-F12 theories.-SDS: The 'static-dynamic-static' framework for strongly correlated electrons.-Trihalide cations MF3+, MCl3+ and MBr3+ , M=B, Al, Ga: Pseudo Jahn-Teller coupling, electronic spectra, and ionization potentials of MX3.-Finite-temperature full configuration interaction.-Mechanisms of f-f Hypersensitive Transition Intensities of Lanthanide Trihalide Molecules: A Spin-Orbit Configuration Interaction Study.-Loss of a C2Hn fragment from pyrene and circumcoronene.- Quantum chemical characterization of the X('A ), a(^3B ), A('B ) and B(2'A ) states of diiodomethylene and the enthalpies of formation of diiodomethylene, iodomethylene and iodomethylidyne.-A Hirshfeld interpretation of the charge, spin distribution and polarity of the dipole moment of the open shell (triplet sigma minus) phosphorous halides:PF and PCl.-Efficient evaluation of exchange integrals by means of Fourier transform of the 1/r operator and its numerical quadrature.- Anomeric Effects in Fluoro and Trifluoromethyl Piperidines: A Computational Study of Conformational Preferences and Hydration.-The Wuppertal Multireference Configuration Interaction (MRD-CI) Program System.-sigma-sigma and sigma-pi Pnicogen Bonds in Complexes H XP:PCX, for X = F, Cl, OH, NC, CN, CCH, CH , and H.-Unitary group approach to the many-electron correlation problem: Spin-dependent operators.
  • (source: Nielsen Book Data)
In this Festschrift dedicated to the late Isaiah Shavitt (1925-2012) , selected researchers in theoretical chemistry present research highlights on major developments in the field. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format, as well as a special electronic edition. This volume provides valuable content for all researchers in theoretical chemistry, and will especially benefit those research groups and libraries with limited access to the journal.
(source: Nielsen Book Data)
Book
1 online resource (x, 263 p.) : ill. (some color). Digital: text file; PDF.
  • Nanostructured systems for fluorescence imaging applications.- Luminescent silica nanoparticles for optical imaging.- Gold-based nanomaterials for applications in nanomedicine.- Core-shell polymer nanoparticles for photodynamic therapy of cancer.- Photoactivable surfaces for biomedical applications.- Up-converting nanoparticles for drug delivery.- Quantum dots for biomedical applications.- Engineered nanoconstructs for multimodal phototherapy.
  • (source: Nielsen Book Data)
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
(source: Nielsen Book Data)
Book
1 online resource (XXII, 297 p. 127 ill. in color.) : online resource. Digital: text file; PDF.
  • Introduction Section I. Propagation of laminar spherical flames Chapter 1. Flame propagation. Theoretical approaches 1. Influence of chemically active additives on flame .velocity of rich H2 + air mixtures 2. Concentration limits of combustion in rich hydrogen-air mixtures in the presence of inhibitors 3. On the nature of an upper concentration limit of flame propagation in an H2 + air mixture References Chapter 2. Flame propagation by spark discharge initiation 4. Influence of inert additives on the time of formation of steady spherical flame front of mixtures of natural gas and isobutylene with oxygen under spark initiation 5. Influence of inert and active additives on the features of initiation and propagation of laminar spherical flames a t atmospheric pressure 6. Numerical investigation of effects of surface recombination and initiation for laminar hydrogen flames at atmospheric pressure 7. Investigation into regularities of lean hydrogen-air mixtures combustion at atmospheric pressure by means of high-speed cinematography References Chapter 3. Ignition and flame propagation in heated vessels 8. Investigation into thermal ignition in chain oxidation of hydrogen, natural gas, and isobutene by means of high-speed color cinematography 9. Investigation into spontaneous ignition of propane-air and n-pentane-air mixtures in heated vessel at atmospheric pressure by means of high-speed color cinematography 10. On the features of the negative temperature coefficient phenomenon in combustion of n-pentane-air mixtures 11. Investigation into spontaneous ignition of hydrogen-air mixtures in a heated reactor at atmospheric pressure by means of high-speed color cinematography References Chapter 4. Some features of kinetic mechanisms of gaseous combustion 12. Initiation of hydrogen flame by a local source 13. Various influence of active chemical additives on hydrogen and hydrocarbons combustion References Section 2. Unsteady gaseous combustion Chapter 1. Instabilities in gaseous combustion 1. Flame propagation regimes at combustion of lean hydrogen-air mixtures in the presence of additives at central spark initiation at atmospheric pressure 2. Cellular combustion at transition of spherical flame front to flat front at initiated ignition of methane-air, methane-oxygen and n-pentane-air mixtures 3. Establishment of some features of propagation of unstable flames by 3D optical spectroscopy and color speed cinematography 4. Acoustic instabi lities in hydrogen-air mixtures in the closed reactor at the central spark initiation References Chapter 2. Flame interaction with obstacles 5. Interaction of spherical flames of hydrogen-air and methane-air mixtures in the closed reactor at the central spark initiation with close-meshed obstacles 6. Interaction of laminar flames of methane-air mixtures with close-meshed spherical and planar obstacles in closed cylindrical reactor at spark discharge initiation 7. Non-steady propagation of single and counter flames in hydrogen-oxygen and natural gas-oxygen mixtures in closed cylindrical vessels at spark initiation in initially motionless gas 8. Penetration of flames of methane-oxygen mixtures through spherical and planar obstacles in closed cylindrical reactor 9. Interaction of laminar flames of natural gas-oxygen mixtures with planar obstacles, diffusers and confu sers References Section 3. Detonation limits in gaseous systems 1. Contemporary approaches to the description of supersonic combustion 2. Influence of an acoustic resonator on flame propagation regimes in spark initiated H2 combustion in cylindrical reactor in the vicinity of the lower detonation limit 3. Influence of small chemical additives on the velocity of detonation wave and the detonation limit in rich hydrogen mixtures References Section 4. The role of disperse phase in combustion processes Chapter 1. Phase formation in combustion and pyrolysis 1. Factors determ ining phase fo rmation in the heterogeneous chain oxidation of dichlorosilane at low pressures 2. Formation of liquid and solid dusty crystals in gas-phase combustion reactions by the example of dichlorosilane oxidation 3. Thermal decomposition of dichlorosilane. Formation of threadlike nanostructures of silicon and silicon carbide by means of the method of chemical vapor deposition References Chapter 2. Features of combustion of coal gas suspensions 4. Features of thermal ignition of coal gas suspensions, containing natural gas and oxygen 5. Thermal ignition of coal powders in the presence of natural gas, oxygen and chemically active ad ditives 6. Investigation into ignition of coal powders in the presence of oxygen and natural gas by means of high-speed cinematography 7. Suppression of ignition of coal powders in the presence of oxygen and natural gas with small additives of vapor of octadecafluorodecahydronaphthalene C10F18 References Final remarks Acknowledgements.
  • (source: Nielsen Book Data)
This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.
(source: Nielsen Book Data)
Book
1 online resource (IX, 234 pages) : illustrations (some color). Digital: text file; PDF.
  • Polymeric Hydrogels: A Review of Recent Developments.- Conducting Polymer Hydrogels.-Polysaccharide-Based Natural Hydrogels.- Protein-Based Hydrogels.- Sterculia Gum-Based Hydrogels for Drug Delivery Applications.-Antimicrobial Polymeric Hydrogels.- Bio-Polymer Based Hydrogel for the Decontamination of Organic Waste.-Chitosan and Starch-Based Hydrogels via Graft Copolymerization.
  • (source: Nielsen Book Data)
This book is concerned with polymeric hydrogels, which are considered as one of the most promising types of new polymer-based materials. Each chapter in this book describes a selected class of polymeric hydrogels, such as superabsorbent hybrid nanohydrogels, conducting polymer hydrogels, polysaccharide-based or protein-based hydrogels, or gels based on synthetic polymers. In this way, the book also addresses some of the fascinating properties and applications of polymeric hydrogels: they are three-dimensional, hydrophilic, polymeric networks that can absorb, swell and retain large quantities of water or aqueous fluids. In combination with metal nanoparticles, nanofibrils or nanowhiskers, which may be embedded in the gels, they find widespread applications, ranging from agriculture, and waste water treatment, over electronics, to pharmaceutical and biomedical applications. Applications mentioned in this book include electro sensors, capacitors, electromechanical actuators, and even artificial muscles.
(source: Nielsen Book Data)
Book
1 online resource (XVIII, 406 p. 61 ill., 9 illus. in color.) : online resource. Digital: text file; PDF.
  • Introduction.- Reduced Density Operators.- Correlations due to the Spin Statistics.- Mean-Field Approximation.- Correlations and their Dynamics.- Non-Markovian Effects.- Kinetic Equations with Selfenergy.- Properties of the Kinetic Equation.- T-Matrix Approximation.- Random Phase Approximation.- Screened Ladder Approximation.- Charged Carriers in EM Fields.- Non-Equilibrium Green's Functions.- Kinetics vs. Molecular Dynamics.- Conclusion.
  • (source: Nielsen Book Data)
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
(source: Nielsen Book Data)
Book
1 online resource (xv, 255 pages) : illustrations (some color)
  • Part I Fundamentals, Basic Information, and Description of the Bench Scale Calorimeters: Introduction
  • Bench Scale Calorimeters
  • Practical Hints
  • Thermokinetic Analysis
  • Examples of Thermokinetic Investigations
  • Part II Practical Information and Applications: Use of the Described Calorimeters for Determination of Additional, Relevant Quantities In Chemical Engineering
  • The Heat Flow Calorimeter by Regenass and Remodels.
This book describes new and efficient calorimetric measurement methods, which can be used to accurately follow the chemical kinetics of liquid phase reaction systems. It describes apparatus and techniques for the precise measuring of the rate of heat liberation in discontinuous and continuous isothermal as well as non-isothermal reactions. The presented methodology can be used to follow the development of chemical reactions online, even in industrial scales. Written by an experienced scientist and practitioner, who can look back on long-standing expert knowledge in chemical engineering, the book contains many practical hints and instructions. The reader will find a sound compact introduction to fundamentals, and comprehensive technical background information and instructions for performing own kinetic experiments. This book is the fusion of scientific background information and long hands-on experience in the practice. .
Book
1 online resource (vii, 225 pages) : illustrations (some color).
Book
1 online resource (439 pages) : illustrations.
  • 1. Introduction.- 2. Tools for the Study of Nanostructures.- 3. Development of Food Nanostructures by Electrospinning.- 4. Polysaccharide-Based Nanoparticles.- 5. Protein-Based Nanoparticles.- 6. Indentation Technique: Overview and Applications in Food Science.- 7. Lipid Matrices for Nanoencapsulation in Food: Liposomes and Lipid Nanoparticles.- 8. High Shear Methods to Produce Nano-Sized Food Related to Dispersed Systems.- 9. Hydrodynamic Characterization of the Formation of Alpha-Tocopherol Nanoemulsions in a Microfluidizer.- 10. Role of Surfactants and Their Applications in Structured Nanosized Systems.- 11. Food Nano and Micro Conjugated Systems: the Case of Albumin-Capsaicin.- 12. Polymer Nanocomposites for Food Packaging Applications.- 13. Nanobiosensors in Food Science and Technology.- 14. Carbon Nanotubes and Their Potential Applications in Developing Electrochemical Biosensors for Detection of Analytes in Food.- 15. Safety Studies of Metal Oxides Nanoparticles Used in the Food Industry.- 16. Multiscale and Nanostructural Approach to Fruits Stability.- 17. Modulating Oxidative Stress: a Nanotechnology Perspective for Cationic Peptides.
  • (source: Nielsen Book Data)
Nanoscience and nanotechnology have had a great impact on the food industry. They have increased the nutritional and functional properties of a number of food products and have aided in food preservation through the addition of antimicrobials or the reduction of water activity. These and many other applications have emerged in recent years to transform food science and technology. This book proposes to look at some of these applications and their effect on food production and innovation.
(source: Nielsen Book Data)
Book
1 online resource (xiii, 283 pages) : illustrations.
Book
1 online resource (Article No. 7918 ) : digital, PDF file.
In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + O<sub>2</sub> reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.
Book
1 online resource : illustrations.
Book
1 online resource (vi, 209 pages) : illustrations (some color).
In this Festschrift dedicated to the 85th birthday of Professor Guosen Yan, selected researchers in theoretical chemistry present research highlights on major developments in the field. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format, as well as a special electronic edition. This volume provides valuable content for all researchers in theoretical chemistry, and will especially benefit those research groups and libraries with limited access to the journal.
Book
3 volumes : illustrations ; 24 cm
  • Preface Bacterial Poly(3-Hydroxybutyrate) as a Biodegradable Polymer for Biomedicine-- A. L. Iordanskii, G. A. Bonartseva, T. A. Makhina, E. D. Sklyanchuk, and G. E. Zaikov The Effect of Antioxidant Drug Mexidol on Bioenergetic Processes and Nitric Oxide Formation in the Animal Tissues-- Z. V. Kuropteva, O. L. Belaya, L. M. Baider, and T. N. Bogatyrenko Calcium Soap Lubricants-- Alazizer, Tugce Nefise Kahyaoglu, and Devrim Balkose Radical Scavenging Capacity of N-(2-Mercapto-2-Methylpropionyl)-L-Cysteine: Design and Synthesis of Its Derivative with Enhanced Potential to Scavenge Hypochlorite-- Maria Banasova, Lukas Kerner, Ivo Juranek, Martin Putala, Katarina Valachova, and Ladislav Soltes Magnetic Properties of Organic Paramagnets-- M. D. Goldfein, E. G. Rozantsev, and N. V. Kozhevnikov Photoelectrochemical Properties of the Films of Extra-Coordinated Tetrapyrrole Compounds and Their Relationship with the Quantum Chemical Parameters of the Molecules-- V. A. Ilatovsky, G. V. Sinko, G. A. Ptitsyn, and G. G. Komissarov Bio-Structural Energy Criteria of Functional States in Normal and Pathological Conditions-- G. A. Korablev and G. E. Zaikov The Temporal Dependence of Adhesion Joining Strength: The Diffusive Model-- Kh. Sh. Yakh'yaeva, G. V. Kozlov, G. M. Magomedov, R. A. Pethrick, and G. E. Zaikov Ways of Regulation of Release of Medicinal Substances from the Chitosan Films-- E. I. Kulish, A. S. Shurshina, and Eli M. Pearce A Research Note on Enzymatic Hydrolysis of Chitosan in Acetic Acid Solution in the Presence of Amikacin Sulfate-- E. I. Kulish, I. F. Tuktarova, V. V. Chernova, M. I. Artsis, and R. A. Pethrick The Structure of the Interfacial Layer and Ozone-Protective Action of Ethylene-Propylene-Diene Elastomers in Covulcanizates with Butadiene-Nitrile Rubbers-- N. M. Livanova, A. A. Popov, V. A. Shershnev, M. I. Artsis, and G. E. Zaikov A Research Note on Influence of Polysulfonamide Membranes on the Productivity of Ultrafiltration Processes-- E. M. Kuvardina, F. F. Niyazi, B. A. Howell, G. E. Zaikov, and N. V. Kuvardin A Research Note on Environmental Durability of Powder Polyester Paint Coatings-- T. N. Kukhta, N. R. Prokopchuk, and B. A. Howell A Research Note on Elastomeric Compositions Based on Butadiene-Nitrile Rubber Containing Polytetrafluorethylene Pyrolysis Products-- N. R. Prokopchuk, V. D. Polonik , Zh. S. Shashok, and E. M. Pearce Spectral-Fluorescent Study of the Effect of Complexation with Anionic Polyelectrolytes on Cis-Trans Equilibrium of Oxacarbocyanine Dyes-- P. G. Pronkin and A. S. Tatikolov Ozone Decomposition-- T. Batakliev, V. Georgiev, M. Anachkov, S. Rakovsky, and G. E. Zaikov A Technical Note on Designing, Analysis and Industrial Use of the Dynamic Spray Scrubber-- R. R. Usmanova, M. I. Artsis, and G. E. Zaikov Engineered Nanoporous Materials: A Comprehensive Review-- Arezoo Afzali and Shima Maghsoodlou Index.
  • (source: Nielsen Book Data)
The aim of this book is to provide both a rigorous view and a more practical, understandable view of industrial chemistry and biochemical physics. This book is geared toward readers with both direct and lateral interest in the discipline. This volume is structured into different parts devoted to industrial chemistry and biochemical physics and their applications. Every section of the book has been expanded, where relevant, to take account of significant new discoveries and realizations of the importance of key concepts. Furthermore, emphases are placed on the underlying fundamentals and on acquisition of a broad and comprehensive grasp of the field as a whole. With contributions from experts from both the industry and academia, this book presents the latest developments in the identified areas. This book incorporates appropriate case studies, explanatory notes, and schematics for more clarity and better understanding. This new book: * Highlights some important areas of current interest in biochemical physics and chemical processes * Focuses on topics with more advanced methods * Emphasizes precise mathematical development and actual experimental details * Analyzes theories to formulate and prove the physicochemical principles * Provides an up-to-date and thorough exposition of the present state of the art of complex materials Topics include: * Photoelectrochemical properties of films of extra-coordinated tetrapyrrole compounds and their relationship with the quantum chemical parameters of the molecules * Bio-structural energy criteria of functional states in normal and pathological conditions * The ozone resistance of covulcanizates butadiene-nitrile rubbers with chlorinated ethylene-propylene-diene elastomers * Ways of regulation of release of medicinal substances from chitosan films * Environmental durability of powder polyester paint coatings * Ozone decomposition * Design and synthesis of its derivative with enhanced potential to scavenge hypochlorite radical scavenging capacity of n-(2-mercapto-2-methylpropionyl)-L-cysteine * Bacterial poly(3-hydroxybutyrate) as a biodegradable polymer for biomedicine * Designing, analysis, and industrial use of the dynamic spray scrubber * Magnetic properties of organic paramagnet * The effect of antioxidant drug mexidol on bioenergetic processes and nitric oxide formation in the animal tissues.
(source: Nielsen Book Data)
Chemistry & ChemEng Library (Swain)
Book
1 online resource.
"Based on the '240' Conference held at the University of Chicago in September of 2012, this special volume of The Advances in Chemical Physics series celebrates scientific research contributions and careers of R. Stephen Berry, Stuart A. Rice and Joshua Jortner"-- Provided by publisher.
Book
1 online resource (ix, 523 pages)
Book
1 online resource (xvii, 80 pages) : illustrations (some color).

Looking for different results?

Modify your search: Remove limit(s) Search all fields Search without "and" "of" "the"

Search elsewhere: Search WorldCat Search library website