- Washington, DC : American Chemical Society, 2019.
- Description
- Book — 1 online resource (213 pages) : illustrations.
- Summary
-
- Using Flipped Classroom Settings to Shift the Focus of a General Chemistry Course from Topic Knowledge to Learning and Problem-Solving Skills: A Tale of Students Enjoying the Class They Were Expecting to Hate / Ramella, Daniele, College of Science and Technology-Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States; Brock, Benjamin E., CAT-Center for Advancement of Teaching, Temple University, Philadelphia, Pennsylvania 19122, United States, School of Education, Temple University, Philadelphia, Pennsylvania 19122, United States; Velopolcek, Maria K., Department of Chemistry, Duke University, Durham, North Carolina 27701, United States; Winters, Kyle P., School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States / http://dx.doi.org/10.1021/bk-2019-1322.ch001
- Combining Pre-class Preparation with Collaborative In-Class Activities to Improve Student Engagement and Success in General Chemistry / Blaser, Mark / http://dx.doi.org/10.1021/bk-2019-1322.ch002
- Using Clicker-Based Group Work Facilitated by a Modified Peer Instruction Process in a Highly Successful Flipped General Chemistry Classroom / Pollozi, Shejla, Department of Chemistry, Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States, Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States; Haddad, Ibrahim, Department of Chemistry, Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States; Tyagi, Aanchal, Department of Chemistry, Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States; Mills, Pamela, Department of Chemistry, Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States, Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States; McGregor, Donna, Department of Chemistry, Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States, Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States / http://dx.doi.org/10.1021/bk-2019-1322.ch003
- Maximizing Learning Efficiency in General Chemistry / Cracolice, Mark S., Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States; Queen, Matt, Department of Biological and Physical Sciences, Montana State University Billings, 1500 University Drive, Billings, Montana 59101, United States / http://dx.doi.org/10.1021/bk-2019-1322.ch004
- Flipping General Chemistry in Small Classes: Students' Perception and Success / Hutchinson-Anderson, Kelly M. / http://dx.doi.org/10.1021/bk-2019-1322.ch005
- Active Learning in the Large Lecture Hall Format / LaBrake, Cynthia / http://dx.doi.org/10.1021/bk-2019-1322.ch006
- Large-Scale, Team-Based Curriculum Transformation and Student Engagement in General Chemistry I and II / Lamont, Liana B., Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States; Stoll, Lindy K., Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States; Pesavento, Theresa M., Department of Academic Technology, University of Wisconsin-Madison, 1305 Linden Drive, Madison, Wisconsin 53706, United States; Bain, Rachel L., Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States; Landis, Clark R., Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States; Sibert, Edwin L., Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States / http://dx.doi.org/10.1021/bk-2019-1322.ch007
- Active Learning in Hybrid-Online General Chemistry / Miller, Dionne A. / http://dx.doi.org/10.1021/bk-2019-1322.ch008
- A Course Transformation to Support First-Year Chemistry Education for Engineering Students / Addison, Christopher J.; Núñez, José Rodríguez / http://dx.doi.org/10.1021/bk-2019-1322.ch009
- Flipped Classroom Learning Environments in General Chemistry: What Is the Impact on Student Performance in Organic Chemistry? / Eichler, Jack F., Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States; Peeples, Junelyn, Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States / http://dx.doi.org/10.1021/bk-2019-1322.ch010
- Editors' Biographies / http://dx.doi.org/10.1021/bk-2019-1322.ot001
- Washington, DC : American Chemical Society, 2018.
- Description
- Book — 1 online resource (219 pages) : illustrations.
- Summary
-
- Trying on Teaching: Transforming STEM Classrooms with a Learning Assistant Program / Schick, Carolyn P. / http://dx.doi.org/10.1021/bk-2018-1280.ch001
- Synergistic Efforts To Support Early STEM Students / Owens, Kalyn S., Chemistry Department, North Seattle College, 9600 College Way N., Seattle, WashingtonA 98103, United States; Murkowski, Ann J., Biology Department, North Seattle College, 9600 College Way N., Seattle, Washington 98103, United States / http://dx.doi.org/10.1021/bk-2018-1280.ch002
- Improving Student Outcomes with Supplemental Instruction / Flaris, Vicki / http://dx.doi.org/10.1021/bk-2018-1280.ch003
- Using Strategic Collaborations To Expand Instrumentation Access at Two-Year Colleges / Stromberg, Christopher J., Department of Chemistry and Physics, Hood College, 401 Rosemont Ave., Frederick, Maryland 21701, United States; Ellis, Debra, Department of Science, Frederick Community College, 7932 Opossumtown Pike, Frederick Maryland 21702, United States; Wood, Perry A. D., Department of Science, Frederick Community College, 7932 Opossumtown Pike, Frederick Maryland 21702, United States; Bennett, Kevin H., Department of Chemistry and Physics, Hood College, 401 Rosemont Ave., Frederick, Maryland 21701, United States; Patterson, Garth E., Department of Science, Mount St. Mary's University, 16300 Old Emmitsburg Road, Emmitsburg, Maryland 21727, United States; Bradley, Christopher, Department of Science, Mount St. Mary's University, 16300 Old Emmitsburg Road, Emmitsburg, Maryland 21727, United States / http://dx.doi.org/10.1021/bk-2018-1280.ch004
- Development of a Pre-Professional Program at a Rural Community College / Burchett, Shayna; Hayes, Jack Lee / http://dx.doi.org/10.1021/bk-2018-1280.ch005
- Student Affective State: Implications for Prerequisites and Instruction in Introductory Chemistry Classes / Ross, J.; Lai, C.; Nuñez, L. / http://dx.doi.org/10.1021/bk-2018-1280.ch006
- In-Class Worksheets for Student Engagement and Success / Gyanwali, Gaumani / http://dx.doi.org/10.1021/bk-2018-1280.ch007
- A Tool Box Approach for Student Success in Chemistry / Alexander, Janice / http://dx.doi.org/10.1021/bk-2018-1280.ch008
- Identifying, Recruiting, and Motivating Undergraduate Student Researchers at a Community College / Schauer, Douglas J. / http://dx.doi.org/10.1021/bk-2018-1280.ch009
- Honors Modules To Infuse Research into the Chemistry Curriculum / Palmer, Alycia M.; Anna, Laura J. / http://dx.doi.org/10.1021/bk-2018-1280.ch010
- College Students Get Excited about Whiskey: The Pseudo-Accidental Creation of a Thriving Independent Student Research Program at a Two-Year Community College / Silvestri, Regan / http://dx.doi.org/10.1021/bk-2018-1280.ch011
- What To Know Before You Write Your First NSF Proposal / Higgins, Thomas B. / http://dx.doi.org/10.1021/bk-2018-1280.ch012
- Editors' Biographies / http://dx.doi.org/10.1021/bk-2018-1280.ot001
(source: Nielsen Book Data)
- International Conference of Students and Young Scientists "Prospects of Fundamental Sciences Development" (14th : 2017 : Tomsk, Russia)
- [Melville, New York} : AIP Publishing, 2017.
- Description
- Book — 1 online resource : illustrations (some color). Digital: text file.
- Herman Skolnik Award Symposium (2015 : Boston, Mass.)
- Washington, DC : American Chemical Society, 2016.
- Description
- Book — 1 online resource (386 pages) : illustrations.
- Summary
-
- Frontiers in Molecular Design and Chemical Information Science: Introduction / Bienstock, Rachelle J. / http://dx.doi.org/10.1021/bk-2016-1222.ch001
- Complexity and Heterogeneity of Data for Chemical Information Science / Bajorath, Jürgen / http://dx.doi.org/10.1021/bk-2016-1222.ch002
- Exploring Molecular Promiscuity from a Ligand and Target Perspective / Hu, Ye; Bajorath, Jürgen / http://dx.doi.org/10.1021/bk-2016-1222.ch003
- Network Variants for Analyzing Target-Ligand Interactions / Hu, Ye; Bajorath, Jürgen / http://dx.doi.org/10.1021/bk-2016-1222.ch004
- Going Beyond R-Group Tables / Shanmugasundaram, Veerabahu; Zhang, Liying; Poss, Christopher; Milbank, Jared; Starr, Jeremy / http://dx.doi.org/10.1021/bk-2016-1222.ch005
- Molecular Similarity Approaches in Chemoinformatics: Early History and Literature Status / Willett, Peter / http://dx.doi.org/10.1021/bk-2016-1222.ch006
- Non-Specificity of Drug-Target Interactions – Consequences for Drug Discovery / Maggiora, Gerald; Gokhale, Vijay / http://dx.doi.org/10.1021/bk-2016-1222.ch007
- Coping with Complexity in Ligand-Based De Novo Design / Schneider, Gisbert, Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland; Schneider, Petra, Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland, inSili.com LLC, Segantinisteig 3, CH-8049 Zurich, Switzerland / http://dx.doi.org/10.1021/bk-2016-1222.ch008
- Soft Sensors: Chemoinformatic Model for Efficient Control and Operation in Chemical Plants / Kaneko, Hiromasa; Funatsu, Kimito / http://dx.doi.org/10.1021/bk-2016-1222.ch009
- Data Visualization & Clustering: Generative Topographic Mapping Similarity Assessment Allied to Graph Theory Clustering / Escobar, Matheus de Souza; Kaneko, Hiromasa; Funatsu, Kimito / http://dx.doi.org/10.1021/bk-2016-1222.ch010
- Generative Topographic Mapping Approach to Chemical Space Analysis / Gaspar, Héléna A., Laboratoire de Chemoinformatique, UMR 7140, Université de Strasbourg, 1 rue Blaise Pascal, Strasbourg 67000, France; Sidorov, Pavel, Laboratoire de Chemoinformatique, UMR 7140, Université de Strasbourg, 1 rue Blaise Pascal, Strasbourg 67000, France, Laboratory of Chemoinformatics, Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia; Horvath, Dragos, Laboratoire de Chemoinformatique, UMR 7140, Université de Strasbourg, 1 rue Blaise Pascal, Strasbourg 67000, France; Baskin, Igor I., Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia, Laboratory of Chemoinformatics, Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia; Marcou, Gilles, Laboratoire de Chemoinformatique, UMR 7140, Université de Strasbourg, 1 rue Blaise Pascal, Strasbourg 67000, France; Varnek, Alexandre, Laboratoire de Chemoinformatique, UMR 7140, Université de Strasbourg, 1 rue Blaise Pascal, Strasbourg 67000, France, Laboratory of Chemoinformatics, Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia / http://dx.doi.org/10.1021/bk-2016-1222.ch011
- Visualization of a Multidimensional Descriptor Space / Gaspar, Héléna A., Laboratoire de Chemoinformatique, UMR 7140, Université de Strasbourg, 1 rue Blaise Pascal, Strasbourg 67000, France; Baskin, Igor I., Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia, Laboratory of Chemoinformatics, Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia; Varnek, Alexandre, Laboratoire de Chemoinformatique, UMR 7140, Université de Strasbourg, 1 rue Blaise Pascal, Strasbourg 67000, France / http://dx.doi.org/10.1021/bk-2016-1222.ch012
- The Application of Cheminformatics in the Analysis of High-Throughput Screening Data / Walters, W. Patrick; Aronov, Alexander; Goldman, Brian; McClain, Brian; Perola, Emanuele; Weiss, Jonathan / http://dx.doi.org/10.1021/bk-2016-1222.ch013
- Steps Toward a Virtual Rat: Predictive Absorption, Distribution, Metabolism, and Toxicity Models / Tseng, Yufeng J., Department of Computer Science and Information Engineering, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, Taiwan 106, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, Taiwan 106; Su, Bo-Han, Department of Computer Science and Information Engineering, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, Taiwan 106; Hsu, Ming-Tsung, Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, No. 1 Sec. 4, Roosevelt Road, Taipei, Taiwan 106; Lin, Olivia A., Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, Taiwan 106 / http://dx.doi.org/10.1021/bk-2016-1222.ch014
- How Many Fingers Does a Compound Have? Molecular Similarity beyond Chemical Space / Lounkine, Eugen; Camargo, Miguel L. / http://dx.doi.org/10.1021/bk-2016-1222.ch015
- The Many Facets of Screening Library Design / Boehm, Markus; Zhang, Liying; Bodycombe, Nicole; Maciejewski, Mateusz; Wassermann, Anne Mai / http://dx.doi.org/10.1021/bk-2016-1222.ch016
- Editors’ Biographies / http://dx.doi.org/10.1021/bk-2016-1222.ot001
(source: Nielsen Book Data)
- Blinder, S. M.
- 2nd ed. - London : Elsevier, 2013.
- Description
- Book — 1 online resource (viii, 269 pages :) : illustrations (some color).
- Summary
-
- 1 Mathematical Thinking
- 2. Numbers 3 Algebra 4 Trigonometry 5 Analytic Geometry 6 Calculus 7 Series and Integrals 8 Differential Equations 9 Matrix Algebra 10 Multivariable Calculus 11 Vector Analysis 12 Special Functions 13 Complex Variables.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
6. Processes [2013 -]
- Processes (Basel, Switzerland)
- Basel, Switzerland : MDPI AG
- Description
- Journal/Periodical — 1 online resource
- Wei, Huibin.
- Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint : Springer, 2013.
- Description
- Book — 1 online resource Digital: text file; PDF.
- Summary
-
- Introduction.- Analysis of Herbicides on a Single C30 Bead via the Platform Combined Microfluidic Device with ESI-Q-TOF-MS.- Monitoring of Glutamate Release from Neuronal Cell Based on the Analysis Platform Combining the Microfluidic Devices with ESI-Q-TOF-MS.- Microfluidic Device with Integrated Porous Membrane for Cell Sorting and Separation.- Cell Co-culture and Signaling Analysis Based on Microfluidic Devices Coupling with ESI-Q-TOF-MS.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Weinheim : Wiley-VCH, c2012.
- Description
- Book — 1 online resource (xvii, 360 p.) : ill.
- Summary
-
- Preface XIII List of Contributors XV
- 1 Characterization of Nanocomposite Materials: An Overview
- 1 Vikas Mittal 1.1 Introduction
- 1 1.2 Characterization of Morphology and Properties
- 2 1.3 Examples of Characterization Techniques
- 5 References
- 12
- 2 Thermal Characterization of Fillers and Polymer Nanocomposites
- 13 Vikas Mittal 2.1 Introduction
- 13 2.2 TGA of Fillers
- 13 2.3 TGA of Polymer Nanocomposites
- 23 2.4 DSC of Fillers
- 25 2.5 DSC of Composites
- 26
- 3 Flame-Retardancy Characterization of Polymer Nanocomposites
- 33 Joseph H. Koo, Si Chon Lao, and Jason C. Lee 3.1 Introduction
- 33 3.2 Types of Flame-Retardant Nanoadditives
- 33 3.3 Thermal, Flammability, and Smoke Characterization Techniques
- 42 3.4 Thermal and Flame Retardancy of Polymer Nanocomposites
- 46 3.5 Flame Retardant Mechanisms of Polymer Nanocomposites
- 66 3.6 Concluding Remarks and Trends of Polymer Nanocomposites
- 68 Acknowledgments
- 69 References
- 69
- 4 PVT Characterization of Polymeric Nanocomposites
- 75 Leszek A. Utracki 4.1 Introduction
- 75 4.2 Components of Polymeric Nanocomposites
- 76 4.3 Pressure--Volume--Temperature ( PVT ) Measurements
- 79 4.4 Derivatives, Compressibility, and Thermal Expansion Coeffi cient
- 83 4.5 Thermodynamic Theories
- 89 4.6 Thermodynamic Interaction Coefficients
- 100 4.7 Theoretical Predictions
- 105 4.8 Summary and Conclusions
- 106 References
- 109
- 5 Following the Nanocomposites Synthesis by Raman Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS)
- 115 Sorina Alexandra Garea and Horia Iovu 5.1 Nanocomposites Based on POSS and Polymer Matrix
- 115 5.2 Raman and XPS Applied in Synthesis of Nanocomposites Based on Carbon Nanotubes and Polymers
- 129 Acknowledgments
- 138 References
- 138
- 6 Tribological Characterization of Polymer Nanocomposites
- 143 Markus Englert and Alois K. Schlarb 6.1 Introduction
- 143 6.2 Tribological Fundamentals
- 144 6.3 Wear Experiments
- 149 6.4 Selection Criteria
- 152 6.5 Design of Polymer Nanocomposites and Multiscale Composites
- 153 6.6 Selected Experimental Results
- 153 References
- 165
- 7 Dielectric Relaxation Spectroscopy for Polymer Nanocomposites
- 167 Chetan Chanmal and Jyoti Jog 7.1 Introduction
- 167 7.2 Theory of Dielectric Relaxation Spectroscopy
- 168 7.3 PVDF/Clay Nanocomposites
- 171 7.4 PVDF/BaTiO3 Nanocomposites
- 175 7.5 PVDF/Fe3O4 Nanocomposites
- 177 7.6 Comparative Analysis of PVDF Nanocomposites
- 181 7.7 Conclusions
- 182 Acknowledgment
- 182 Nomenclature
- 182 References
- 183
- 8 AFM Characterization of Polymer Nanocomposites
- 185 Ken Nakajima, Dong Wang, and Toshio Nishi 8.1 Atomic Force Microscope (AFM)
- 185 8.2 Elasticity Measured by AFM
- 193 8.3 Example Studies
- 201 8.4 Conclusion
- 225 References
- 225
- 9 Electron Paramagnetic Resonance and Solid-State NMR Studies of the Surfactant Interphase in Polymer--Clay Nanocomposites
- 229 Gunnar Jeschke 9.1 Introduction
- 229 9.2 NMR, EPR, and Spin Labeling Techniques
- 230 9.3 Characterization of Organically Modified Layered Silicates
- 237 9.4 Characterization of Nanocomposites
- 242 9.5 Conclusion
- 247 Acknowledgments
- 248 References
- 248
- 10 Characterization of Rheological Properties of Polymer Nanocomposites
- 251 Mo Song and Jie Jin 10.1 Introduction
- 251 10.2 Fundamental Rheological Theory for Studying Polymer Nanocomposites
- 252 10.3 Characterization of Rheological Properties of Polymer Nanocomposites
- 257 10.4 Conclusions
- 279 References
- 280
- 11 Segmental Dynamics of Polymers in Polymer/Clay Nanocomposites Studied by Spin-Labeling ESR
- 283 Yohei Miwa, Shulamith Schlick, and Andrew R. Drews 11.1 Introduction
- 283 11.2 Spin Labeling: Basic Principles
- 284 11.3 Exfoliated Poly(methyl acrylate) (PMA)/Clay Nanocomposites
- 286 11.4 Intercalated Poly(ethylene oxide) (PEO)/Clay Nanocomposites
- 293 11.5 Conclusions
- 300 Acknowledgments
- 301 References
- 301
- 12 Characterization of Polymer Nanocomposite Colloids by Sedimentation Analysis
- 303 Vikas Mittal 12.1 Introduction
- 303 12.2 Materials and Experimental Methods
- 305 12.3 Results and Discussion
- 307 12.4 Conclusions
- 319 Acknowledgments
- 320 References
- 320
- 13 Biodegradability Characterization of Polymer Nanocomposites
- 323 Katherine M. Dean, Parveen Sangwan, Cameron Way, and Melissa A.L. Nikolic 13.1 Introduction
- 323 13.2 Methods of Measuring Biodegradation
- 323 13.3 Standards for Biodegradation
- 331 13.4 Biodegradable Nanocomposites
- 331 13.5 Starch Nanocomposites
- 336 13.6 PCL Nanocomposites
- 337 13.7 PHA/PHB Nanocomposites
- 339 13.8 Nanocomposites of Petrochemical-Based Polymer
- 342 13.9 Conclusions
- 343 References
- 343 Index 347.
- (source: Nielsen Book Data)
- CHARACTERIZATION OF NANOCOMPOSITE MATERIALS: AN OVERVIEW Introduction Characterization of Morphology and Properties Examples of Characterization Techniques THERMAL CHARACTERIZATION OF FILLERS AND POLYMER NANOCOMPOSITES Introduction TGA of Fillers TGA of Polymer Nanocomposites DSC of Fillers DSC of Composites FLAME RETARDANDY CHARACTERIZATION OF POLYMER NANOCOMPOSITES Introduction Types of Flame Retardant Nanoadditives Thermal, Flammability, and Smoke Characterization Techniques Thermal and Flame Retardancy of Polymer Nanocomposites PVT CHARACTERIZATION OF POLYMERIC NANOCOMPOSITES Introduction Components of Polymeric Nanocomposites Pressure-Volume-Temperature (PVT) Measurements Derivatives
- Compressibility and Thermal Expansion Coefficient Thermodynamic Theories Thermodynamic Interaction Coefficients Theoretical Predictions Summary and Conclusions FOLLOWING THE NANOCOMPOSITES SYNTHESIS BY RAMAN SPECTROSCOPY AND X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) Nanocomposites Based on POSS and Polymer Matrix Raman and XPS Applied in Synthesis of Nanocomposites Based on Carbon Nanotubes and Polymers TRIBOLOGICAL CHARACTERIZATION OF POLYMER NANOCOMPOSITES Introduction Tribological Fundamentals Wear Experiments Selection Criteria Design of Polymer Nanocomposites and Multiscale-Composites Selected Experimental Results DIELECTRIC RELAXATION SPECTROSCOPY FOR POLYMER NANOCOMPOSITES Introduction Theory of Dielectric Relaxation Spectroscopy PVDF/Clay Nanocomposites PVDF/BaTiO3 Nanocomposites PVDF/Fe3O4 Nanocomposites Comparative Analysis of PVDF Nanocomposites Conclusions AFM CHARACTERIZATION OF POLMYER NANOCOMPOSITES Atomic Force Microscope (AFM) Elasticity Measured by AFM Example Studies Conclusion ELECTRON PARAMAGNETIC RESONANCE AND SOLID-STATE NMR STUDIES OF THE SURFACTANT INTERPHASE IN POLYMER-CLAY NANOCOMPOSITES Introduction NMR, EPR and Spin Labeling Techniques Characterization of Organically Modified Layered Silicates Characterization of Nanocomposites Conclusion CHARACTERIZATION OF RHEOLOGICAL PROPERTIES OF POLYMER NANOCOMPOSITES Introduction Fundamental Rheological Theory for Studying Polymer Nanocomposites Characterization of Rheological Properties of Polymer Nanocomposites Conclusions SEGMENTAL DYNAMICS OF POLYMERS IN POLYMER/CLAY NANOCOMPOSITES STUDIED BY SPIN-LABELING ESR Introduction Spin-Labeling: Basic Principles Exfoliated Poly(methyl acrylate) (PMA)/Clay Nanocomposites Intercalated Poly(ethylene oxide) (PEO)/Clay Nanocomposites Conclusions CHARACTERIZATION OF POLYMER NANOCOMPOSITE COLLOIDS BY SEDIMENTATION ANALYSIS Introduction Materials and Experimental Methods Results and Discussion Conclusions BIODEGRADABILITY CHARACTERIZATION OF POLYMER NANOCOMPOSITES Introduction Methods of Measuring Biodegradation Standards for Biodegradation Biodegradable Nanocomposites Starch Nanocomposites PCL Nanocomposites PHA/PHB Nanocomposites Nanocomposites of Petrochemical Based Polymer Conclusions.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
9. Numerik linearer Gleichungssysteme [electronic resource] : direkte und iterative Verfahren [2005]
- Kanzow, Christian.
- Berlin ; New York : Springer, c2005.
- Description
- Book — xiii, 349 p.
10. Knovel [2001 -]
- [Norwich, NY] : Knovel, [©2001]-
- Database topics
- Science (General); Chemistry and Chemical Engineering; Engineering
- Summary
-
Knovel provides access to reference materials in the fields of engineering and applied sciences. Subject areas covered include: chemistry and chemical engineering, plastics and rubbers, semiconductors, advanced materials, and safety, health and hygiene.
- Online