%{search_type} search results

1,203 catalog results

RSS feed for this result
View results as:
Number of results to display per page
Book
iii, 45 pages ; 24 cm
Green Library
Book
xii, 201 pages : illustrations, maps ; 24 cm
Green Library
Book
1 online resource (211 pages) : color illustrations
Book
1 online resource (54 pages) : color illustrations, color maps
Book
iii, 52 pages ; 24 cm.
Green Library
Book
iii, 83 pages ; 24 cm.
Green Library
Book
iii, 110 pages : illustrations ; 24 cm
Green Library
Book
vi, 127 pages ; 24 cm
Green Library
Book
iii, 127 pages : illustrations ; 24 cm.
Green Library
Book
1 online resource (642 p.) : digital, PDF file.
With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity. Effects of altered land-management regimes were analyzed based on select county-level biomass-production scenarios for 2017 and 2040 taken from the 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (BT16), volume 1, which assumes that the land bases for agricultural and forestry would not change over time. The scenarios reflect constraints on biomass supply (e.g., excluded areas; implementation of management practices; and consideration of food, feed, forage, and fiber demands and exports) that intend to address sustainability concerns. Nonetheless, both beneficial and adverse environmental effects might be expected. To characterize these potential effects, this research sought to estimate where and under what modeled scenarios or conditions positive and negative environmental effects could occur nationwide. The report also includes a discussion of land-use change (LUC) (i.e., land management change) assumptions associated with the scenario transitions (but not including analysis of indirect LUC [ILUC]), analyses of climate sensitivity of feedstock productivity under a set of potential scenarios, and a qualitative environmental effects analysis of algae production under carbon dioxide (CO<sub>2</sub>) co-location scenarios. Because BT16 biomass supplies are simulated independent of a defined end use, most analyses do not include benefits from displacing fossil fuels or other products, with the exception of including a few illustrative cases on potential reductions in GHG emissions and fossil energy consumption associated with using biomass supplies for fuel, power, heat, and chemicals. Most analyses in volume 2 show potential for a substantial increase in biomass production with minimal or negligible environmental effects under the biomass supply constraints assumed in BT16. Although corn ethanol has been shown to achieve GHG emissions improvements over fossil fuels, cellulosic biomass shows further improvements in certain environmental indicators covered in this report. The harvest of agricultural and forestry residues generally shows the smallest contributions to changes in certain environmental indicators investigated. The scenarios show national-level net SOC gains. When expanding the system boundary in illustrative cases that consider biomass end use, reductions in GHG emissions are estimated for scenarios in which biomass—rather than oil, coal, and natural gas—is used to produce fuel, power, heat, and chemicals. Analyses of water quality reveal that there could be tradeoffs between biomass productivity and some water quality indicators, but better outcomes for both biomass productivity and water quality can be achieved with selected conservation practices. Biodiversity analyses show possible habitat benefits to some species, with other species showing potential adverse effects that may require additional safeguards. Increasing productivity of algae can reduce GHG emissions and water consumption associated with producing algal biomass, though the effects of water consumption are likely of greater concern in some regions than in others. Moreover, the effects of climate change on potential biomass production show gains and losses in yield among feedstocks across the continental United States. Key research gaps and priorities include actions that can enhance benefits and reduce potential for negative effects of increased biomass...
Book
1 online resource (642 p.) : digital, PDF file.
On behalf of all the authors and contributors, it is a great privilege to present the 2016 Billion-Ton Report (BT16), volume 2: Environmental Sustainability Effects of Select Scenarios from volume 1. This report represents the culmination of several years of collaborative effort among national laboratories, government agencies, academic institutions, and industry. BT16 was developed to support the U.S. Department of Energy’s efforts towards national goals of energy security and associated quality of life.
Book
1 online resource (3.9 MB ): digital, PDF file.
NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'NREL's Resiliency is Taking Many Forms' provides insight into how NREL is drawing on its deep knowledge of renewable energy and energy efficiency to help mitigate or avoid climate change impacts.
Since its creation in 1946, Argonne National Laboratory has addressed the nation’s most pressing challenges in science, energy, the environment, and national security. United by a common goal – to improve the world – Argonne continues to drive the scientific and technological breakthroughs needed to ensure a sustainable future.

Articles+

Journal articles, e-books, & other e-resources
Articles+ results include