1  4
Number of results to display per page
1. Real analysis and probability [2018]
 Dudley, R. M. (Richard M.), author.
 Boca Raton, Fla. : CRC Press, 2018
 Description
 Book — 1 online resource (xi, 176 pages)
 Summary

 chapter 1 Foundations; Set Theory / Richard M. Dudley
 chapter 2 General Topology / Richard M. Dudley
 chapter 3 Measures / Richard M. Dudley
 chapter 4 Integration / Richard M. Dudley
 chapter 5 Lp Spaces; Introduction to Functional Analysis / Richard M. Dudley
 chapter 6 Convex Sets and Duality of Normed Spaces / Richard M. Dudley
 chapter 7 Measure, Topology, and Differentiation / Richard M. Dudley
 chapter 8 Introduction to Probability Theory / Richard M. Dudley
 chapter 9 Convergence of Laws and Central Limit Theorems / Richard M. Dudley
 chapter 10 Conditional Expectations and Martingales / Richard M. Dudley
 chapter 11 Convergence of Laws on Separable Metric Spaces / Richard M. Dudley
 chapter 12 Stochastic Processes / Richard M. Dudley
 chapter 13 Measurability: Borel Isomorphism and Analytic Sets / Richard M. Dudley
(source: Nielsen Book Data)
MATH230B01, STATS310B01
 Course
 MATH230B01  Theory of Probability
 Instructor(s)
 Dembo, Amir
 Course
 STATS310B01  Theory of Probability II
 Instructor(s)
 Dembo, Amir
2. Real analysis and probability [2002]
 Dudley, R. M. (Richard M.)
 Cambridge ; New York : Cambridge University Press, 2002.
 Description
 Book — x, 555 p. ; 24 cm.
 Summary

 1. Foundations: set theory
 2. General topology
 3. Measures
 4. Integration
 5. Lp spaces: introduction to functional analysis
 6. Convex sets and duality of normed spaces
 7. Measure, topology, and differentiation
 8. Introduction to probability theory
 9. Convergence of laws and central limit theorems
 10. Conditional expectations and martingales
 11. Convergence of laws on separable metric spaces
 12. Stochastic processes
 13. Measurability: Borel isomorphism and analytic sets Appendixes: A. Axiomatic set theory B. Complex numbers, vector spaces, and Taylor's theorem with remainder C. The problem of measure D. Rearranging sums of nonnegative terms E. Pathologies of compact nonmetric spaces Indices.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA300 .D83 2002  Unknown 
MATH230B01, STATS310B01
 Course
 MATH230B01  Theory of Probability
 Instructor(s)
 Dembo, Amir
 Course
 STATS310B01  Theory of Probability II
 Instructor(s)
 Dembo, Amir
3. Real analysis and probability [2002]
 Dudley, R. M. (Richard M.)
 Cambridge ; New York : Cambridge University Press, 2002.
 Description
 Book — 1 online resource (x, 555 pages).
 Summary

 1. Foundations: set theory
 2. General topology
 3. Measures
 4. Integration
 5. Lp spaces: introduction to functional analysis
 6. Convex sets and duality of normed spaces
 7. Measure, topology, and differentiation
 8. Introduction to probability theory
 9. Convergence of laws and central limit theorems
 10. Conditional expectations and martingales
 11. Convergence of laws on separable metric spaces
 12. Stochastic processes
 13. Measurability: Borel isomorphism and analytic sets Appendixes: A. Axiomatic set theory B. Complex numbers, vector spaces, and Taylor's theorem with remainder C. The problem of measure D. Rearranging sums of nonnegative terms E. Pathologies of compact nonmetric spaces Indices.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
MATH230B01, STATS310B01
 Course
 MATH230B01  Theory of Probability
 Instructor(s)
 Dembo, Amir
 Course
 STATS310B01  Theory of Probability II
 Instructor(s)
 Dembo, Amir
 Dudley, R. M. (Richard M.)
 Cambridge ; New York : Cambridge University Press, 2002.
 Description
 Book — x, 555 p.
 Summary

 1. Foundations: set theory
 2. General topology
 3. Measures
 4. Integration
 5. Lp spaces: introduction to functional analysis
 6. Convex sets and duality of normed spaces
 7. Measure, topology, and differentiation
 8. Introduction to probability theory
 9. Convergence of laws and central limit theorems
 10. Conditional expectations and martingales
 11. Convergence of laws on separable metric spaces
 12. Stochastic processes
 13. Measurability: Borel isomorphism and analytic sets Appendixes: A. Axiomatic set theory B. Complex numbers, vector spaces, and Taylor's theorem with remainder C. The problem of measure D. Rearranging sums of nonnegative terms E. Pathologies of compact nonmetric spaces Indices.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
MATH230B01, STATS310B01
 Course
 MATH230B01  Theory of Probability
 Instructor(s)
 Dembo, Amir
 Course
 STATS310B01  Theory of Probability II
 Instructor(s)
 Dembo, Amir