1 - 4
Number of results to display per page
1. Real analysis and probability [2018]
- Dudley, R. M. (Richard M.), author.
- Boca Raton, Fla. : CRC Press, 2018
- Description
- Book — 1 online resource (xi, 176 pages)
- Summary
-
- chapter 1 Foundations; Set Theory / Richard M. Dudley
- chapter 2 General Topology / Richard M. Dudley
- chapter 3 Measures / Richard M. Dudley
- chapter 4 Integration / Richard M. Dudley
- chapter 5 Lp Spaces; Introduction to Functional Analysis / Richard M. Dudley
- chapter 6 Convex Sets and Duality of Normed Spaces / Richard M. Dudley
- chapter 7 Measure, Topology, and Differentiation / Richard M. Dudley
- chapter 8 Introduction to Probability Theory / Richard M. Dudley
- chapter 9 Convergence of Laws and Central Limit Theorems / Richard M. Dudley
- chapter 10 Conditional Expectations and Martingales / Richard M. Dudley
- chapter 11 Convergence of Laws on Separable Metric Spaces / Richard M. Dudley
- chapter 12 Stochastic Processes / Richard M. Dudley
- chapter 13 Measurability: Borel Isomorphism and Analytic Sets / Richard M. Dudley
(source: Nielsen Book Data)
MATH-230B-01, STATS-310B-01
- Course
- MATH-230B-01 -- Theory of Probability
- Instructor(s)
- Dembo, Amir
- Course
- STATS-310B-01 -- Theory of Probability II
- Instructor(s)
- Dembo, Amir
2. Real analysis and probability [2002]
- Dudley, R. M. (Richard M.)
- Cambridge ; New York : Cambridge University Press, 2002.
- Description
- Book — x, 555 p. ; 24 cm.
- Summary
-
- 1. Foundations: set theory--
- 2. General topology--
- 3. Measures--
- 4. Integration--
- 5. Lp spaces: introduction to functional analysis--
- 6. Convex sets and duality of normed spaces--
- 7. Measure, topology, and differentiation--
- 8. Introduction to probability theory--
- 9. Convergence of laws and central limit theorems--
- 10. Conditional expectations and martingales--
- 11. Convergence of laws on separable metric spaces--
- 12. Stochastic processes--
- 13. Measurability: Borel isomorphism and analytic sets-- Appendixes: A. Axiomatic set theory-- B. Complex numbers, vector spaces, and Taylor's theorem with remainder-- C. The problem of measure-- D. Rearranging sums of nonnegative terms-- E. Pathologies of compact nonmetric spaces-- Indices.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Stacks | Request (opens in new tab) |
QA300 .D83 2002 | Unknown |
MATH-230B-01, STATS-310B-01
- Course
- MATH-230B-01 -- Theory of Probability
- Instructor(s)
- Dembo, Amir
- Course
- STATS-310B-01 -- Theory of Probability II
- Instructor(s)
- Dembo, Amir
3. Real analysis and probability [2002]
- Dudley, R. M. (Richard M.)
- Cambridge ; New York : Cambridge University Press, 2002.
- Description
- Book — 1 online resource (x, 555 pages).
- Summary
-
- 1. Foundations: set theory--
- 2. General topology--
- 3. Measures--
- 4. Integration--
- 5. Lp spaces: introduction to functional analysis--
- 6. Convex sets and duality of normed spaces--
- 7. Measure, topology, and differentiation--
- 8. Introduction to probability theory--
- 9. Convergence of laws and central limit theorems--
- 10. Conditional expectations and martingales--
- 11. Convergence of laws on separable metric spaces--
- 12. Stochastic processes--
- 13. Measurability: Borel isomorphism and analytic sets-- Appendixes: A. Axiomatic set theory-- B. Complex numbers, vector spaces, and Taylor's theorem with remainder-- C. The problem of measure-- D. Rearranging sums of nonnegative terms-- E. Pathologies of compact nonmetric spaces-- Indices.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
MATH-230B-01, STATS-310B-01
- Course
- MATH-230B-01 -- Theory of Probability
- Instructor(s)
- Dembo, Amir
- Course
- STATS-310B-01 -- Theory of Probability II
- Instructor(s)
- Dembo, Amir
- Dudley, R. M. (Richard M.)
- Cambridge ; New York : Cambridge University Press, 2002.
- Description
- Book — x, 555 p.
- Summary
-
- 1. Foundations: set theory--
- 2. General topology--
- 3. Measures--
- 4. Integration--
- 5. Lp spaces: introduction to functional analysis--
- 6. Convex sets and duality of normed spaces--
- 7. Measure, topology, and differentiation--
- 8. Introduction to probability theory--
- 9. Convergence of laws and central limit theorems--
- 10. Conditional expectations and martingales--
- 11. Convergence of laws on separable metric spaces--
- 12. Stochastic processes--
- 13. Measurability: Borel isomorphism and analytic sets-- Appendixes: A. Axiomatic set theory-- B. Complex numbers, vector spaces, and Taylor's theorem with remainder-- C. The problem of measure-- D. Rearranging sums of nonnegative terms-- E. Pathologies of compact nonmetric spaces-- Indices.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
MATH-230B-01, STATS-310B-01
- Course
- MATH-230B-01 -- Theory of Probability
- Instructor(s)
- Dembo, Amir
- Course
- STATS-310B-01 -- Theory of Probability II
- Instructor(s)
- Dembo, Amir