Long-term sustainability of fracture conductivity is critical for commercial success of engineered geothermal system (EGS) and hydrogeothermal field sites. The injection of proppants has been suggested as a means to enhance the conductivity in these systems. Several studies have examined the chemical behavior of proppants that are not at chemical equilibrium with the reservoir rock and water. These studies have suggested that in geothermal systems, geochemical reactions can lead to enhance proppant dissolution and deposition alteration minerals. We hypothesize that proppant dissolution will decrease the strength of the proppant and can potentially reduce the conductivity of the fracture. To examine the geomechanical strength of proppants, we have performed modified crushing tests of proppants and reservoir rock material that was subjected to geothermal reservoir temperature conditions. The batch reactor experiments heated crushed quartz monzonite rock material, proppants (either quartz sand, sintered bauxite or kryptospheres) with Raft River geothermal water to 250 ºC for a period of 2 months. Solid and liquid samples were shipped to University of Utah for chemical characterization with ICP-OES, ICP-MS, and SEM. A separate portion of the rock/proppant material was subjected to a modified American Petroleum Institute ISO 13503-2 proppant crushing test. This test is typically used to determine the maximum stress level that can be applied to a proppant pack without the occurrence of unacceptable proppant crushing. We will use the test results to examine potential changes in proppant/reservoir rock geomechanical properties as compared to samples that have not been subjected to geothermal conditions. These preliminary results will be used to screen the proppants for long term use in EGS and hot hydrogeothermal systems.
Book
1 online resource (4 ) : digital, PDF file.
The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO’s Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a result, the area is critical to achieving BETO’s overall goals.
Book
p. 297-299 : digital, PDF file.
Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO<sub>2</sub> Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollution from power plants.
Book
1 online resource (7 p.) : digital, PDF file.
This research project developed educational, research, and outreach activities that addressed the challenges of Las Vegas as related to a secure energy supply through conservation, clean and adequate water supply, economic growth and diversification, air quality, and the best use of land, and usable public places. This was part of the UNLV Urban Sustainability Initiative (USI) that responded to a community and state need where a unifying vision of sustainability was developed in a cost-effective manner that promoted formal working partnerships between government, community groups, and industry.
Book
1 online resource (92 p. ) : digital, PDF file.
Sustainability is fundamental to the Department of Energy’s research mission and operations as reflected in the Department’s Strategic Plan. Our overarching mission is to discover the solutions to power and secure America’s future.
Book
1 online resource (None ) : digital, PDF file.
This case study describes community-scale housing constructed on an urban infill site and incorporating energy efficiency, resource efficiency, and durability.
Book
1 online resource (63 p. ) : digital, PDF file.
Investigation of innovative methods for collecting, handling, storing, and transporting corn stover for potential use for production of cellulosic ethanol.
Book
1 online resource (1.3 MB ) : digital, PDF file.
NREL's sustainability practices are integrated throughout the laboratory and are essential to our mission to develop clean energy and energy efficiency technologies and practices, advance related science and engineering, and provide knowledge and innovations to integrate energy systems at all scales. Sustainability initiatives are integrated through our campus, our staff, and our environment allowing NREL to provide leadership in modeling a sustainability energy future for companies, organizations, governments, and communities.
Book
1 online resource (p. 1-13 ) : digital, PDF file.
For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Ultimately, use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.
Book
1 online resource (92 pp. ) : digital, PDF file.
The National Renewable Energy Laboratory's (NREL's) Environmental Performance Report provides a description of the laboratory's environmental management activities for 2013, including information on environmental and sustainability performance, environmental compliance activities and status, and environmental protection programs, highlights, and successes. The purpose of this report is to ensure that U.S. Department of Energy (DOE) and the public receive timely, accurate information about events that have affected or could adversely affect the health, safety, and security of the public or workers; the environment; or the operations of DOE facilities. This report meets the requirements of the Annual Site Environmental Report and is prepared in accordance with the DOE Order 231.1B, Environment, Safety and Health Reporting.
Book
1 online resource (642 p.) : digital, PDF file.
With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity. Effects of altered land-management regimes were analyzed based on select county-level biomass-production scenarios for 2017 and 2040 taken from the 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (BT16), volume 1, which assumes that the land bases for agricultural and forestry would not change over time. The scenarios reflect constraints on biomass supply (e.g., excluded areas; implementation of management practices; and consideration of food, feed, forage, and fiber demands and exports) that intend to address sustainability concerns. Nonetheless, both beneficial and adverse environmental effects might be expected. To characterize these potential effects, this research sought to estimate where and under what modeled scenarios or conditions positive and negative environmental effects could occur nationwide. The report also includes a discussion of land-use change (LUC) (i.e., land management change) assumptions associated with the scenario transitions (but not including analysis of indirect LUC [ILUC]), analyses of climate sensitivity of feedstock productivity under a set of potential scenarios, and a qualitative environmental effects analysis of algae production under carbon dioxide (CO<sub>2</sub>) co-location scenarios. Because BT16 biomass supplies are simulated independent of a defined end use, most analyses do not include benefits from displacing fossil fuels or other products, with the exception of including a few illustrative cases on potential reductions in GHG emissions and fossil energy consumption associated with using biomass supplies for fuel, power, heat, and chemicals. Most analyses in volume 2 show potential for a substantial increase in biomass production with minimal or negligible environmental effects under the biomass supply constraints assumed in BT16. Although corn ethanol has been shown to achieve GHG emissions improvements over fossil fuels, cellulosic biomass shows further improvements in certain environmental indicators covered in this report. The harvest of agricultural and forestry residues generally shows the smallest contributions to changes in certain environmental indicators investigated. The scenarios show national-level net SOC gains. When expanding the system boundary in illustrative cases that consider biomass end use, reductions in GHG emissions are estimated for scenarios in which biomass—rather than oil, coal, and natural gas—is used to produce fuel, power, heat, and chemicals. Analyses of water quality reveal that there could be tradeoffs between biomass productivity and some water quality indicators, but better outcomes for both biomass productivity and water quality can be achieved with selected conservation practices. Biodiversity analyses show possible habitat benefits to some species, with other species showing potential adverse effects that may require additional safeguards. Increasing productivity of algae can reduce GHG emissions and water consumption associated with producing algal biomass, though the effects of water consumption are likely of greater concern in some regions than in others. Moreover, the effects of climate change on potential biomass production show gains and losses in yield among feedstocks across the continental United States. Key research gaps and priorities include actions that can enhance benefits and reduce potential for negative effects of increased biomass...
Book
1 online resource (607 KB ): digital, PDF file.
This paper presents a comparative techno-economic analysis of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates (derived either via thermochemical or biochemical conversion steps). The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates, followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. We show that the emerging pathways via oxygenated intermediates have the potential to be cost competitive with the conventional Fischer-Tropsch process. The evaluated pathways and the benchmark process generally exhibit similar fuel yields and carbon conversion efficiencies. The resulting minimum fuel selling prices are comparable to the benchmark at approximately $3.60 per gallon-gasoline equivalent, with potential for two new pathways to be more economically competitive. Additionally, the coproduct values can play an important role in the economics of the processes with oxygenated intermediates derived via syngas fermentation. Major cost drivers for the integrated processes are tied to achievable fuel yields and conversion efficiency of the intermediate steps, i.e., the production of oxygenates/alcohols from syngas and the conversion of oxygenates/alcohols to hydrocarbon fuels.
Book
1 online resource (1.2 MB ): digital, PDF file.
Climate change is a problem that must be solved. The primary cause of this problem is burning of fossil fuels to generate energy. A dramatic reduction in carbon emissions must happen soon, and a significant fraction of this reduction must come from the transportation sector. This paper reviews existing literature to assess the consensus of the scientific and engineering communities concerning the potential for the United States' light-duty transportation sector to meet a goal of 80 percent reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in just vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries. potential for the United States' light-duty transportation sector to meet a goal of 80 percent reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in just vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries.
There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented. The analysis has shown that the feedstock production systems are capable of simultaneously increasing productivity and soil sustainability.
Book
1 online resource (17 p. ) : digital, PDF file.
The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office held a workshop on “Social Aspects of Bioenergy” on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The findings and recommendations from the workshop and webinar are compiled in this report.
Book
1 online resource.
Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energy’s Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining “who owns” and “who maintains” the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, the invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and contracts (agencies, foundations, pri- vate sector), membership, fees for services (consulting, training, customization, ‘app’ development), repository services (data, services, apps, models, documents, multimedia), advertisements, fees for premier services or applications, subscriptions to value added services, licenses, contributions and donations, endow- ments, and sponsorships.
Book
1 online resource.
The inherent variability in corn stover productivity due to variations in soils and crop management practices might contribute to a variation in corn stover-based bioethanol sustainability. This study was carried out to examine how changes in soil types and crop management options would affect corn stover yield (CSY) and the sustainability of the stover-based ethanol production in the Delta region of Mississippi. Based on potential acreage and geographical representation, three locations were selected. Using CERES-Maize model, stover yields were simulated for several scenarios of soils and crop management options. Based on 'net energy value (NEV)' computed from CSYs, a sustainability indicator for stover-based bioethanol production was established. The effects of soils and crop management options on CSY and NEV were determined using ANOVA tests and regression analyses. Both CSY and NEV were significantly different across sandy loam, silt loam, and silty clay loam soils and also across high-, mid-, and low-yielding cultivars. With an increase in irrigation level, both CSY and NEV increased initially and decreased after reaching a peak. A third-degree polynomial relationship was found between planting date and CSY and NEV each. By moving from the lowest to the highest production scenario, values of CSY and NEV could be increased by 86 to 553%, depending on location and weather condition. The effects of variations in soils and crop management options on NEV were the same as on CSY. The NEV was positive for all scenarios, indicating that corn stover-based ethanol production system in the Delta region is sustainable.
Book
1 online resource (8 ) : digital, PDF file.
This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.
Book
p. 117-127 : digital, PDF file.
In order to aid in transition towards operations that promote sustainability goals, researchers and stakeholders use sustainability assessments. Although assessments take various forms, many utilize diverse sets of indicators that can number anywhere from two to over 2000. Indices, composite indicators, or aggregate values are used to simplify high dimensional and complex data sets and to clarify assessment results. Although the choice of aggregation function is a key component in the development of the assessment, there are few examples to be found in literature to guide appropriate aggregation function selection. This paper develops a connection between the mathematical study of aggregation functions and sustainability assessment in order to aid in providing criteria for aggregation function selection. Relevant mathematical properties of aggregation functions are presented and interpreted. Lastly, we provide cases of these properties and their relation to previous sustainability assessment research. Examples show that mathematical aggregation properties can be used to address the topics of compensatory behavior and weak versus strong sustainability, aggregation of data under varying units of measurements, multiple site multiple indicator aggregation, and the determination of error bounds in aggregate output for normalized and non-normalized indicator measures.
Book
1 online resource (20 p. ) : digital, PDF file.
This report is the result of the second in a series of intense workshops and study sessions on Grand Challenges of the Sustainability Transition, organized by the Sustainability Science Program at Harvard University, hosted by Venice International University, and supported by the Italian Ministry of Environment, Land and Sea.
Book
1 online resource (3.9 MB ): digital, PDF file.
NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'NREL's Resiliency is Taking Many Forms' provides insight into how NREL is drawing on its deep knowledge of renewable energy and energy efficiency to help mitigate or avoid climate change impacts.
Book
1 online resource (Article No. e01206 ) : digital, PDF file.
This paper connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning six environmental, three economic, and three social categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations. A recent demonstration-scale switchgrass-to-ethanol production system located in East Tennessee is used to assess the availability of sustainability indicator data and associated measurements for the feedstock production and logistics portions of the biofuel supply chain. Knowledge pertaining to the available indicators is distributed within a hierarchical decision tree framework to generate an assessment of the overall sustainability of this no-till switchgrass production system relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The relative contributions of the social, economic and environmental information are determined for the overall trajectory of this bioenergy system s sustainability under each scenario. Within this East Tennessee context, switchgrass production shows potential for improving environmental and social sustainability trajectories without adverse economic impacts, thereby leading to potential for overall enhancement in sustainability within this local agricultural system. Given the early stages of cellulosic ethanol production, it is currently difficult to determine quantitative values for all 35 sustainability indicators across the entire biofuel supply chain. This case study demonstrates that integration of qualitative sustainability indicator ratings may increase holistic understanding of a bioenergy system in the absence of complete information.
Book
2.7 MB : digital, PDF file.
This presentation addresses the recognition that the sustainability of the bioeconomy requires strong interlinkages between existing and developing industries in agriculture (terrestrial and aquatic); forestry; waste and residue management in rural, industrial, and urban environments; the chemicals and biotechnology industry in terms of production of substitutes or better performing materials and chemicals; and in the fuels and power sectors. The transition to a low-carbon intensity economy requires the integration of systems and uses circular economy concepts to increase resource use efficiency and security for all biomass and other resources used as well. It requires innovation along the whole supply chains as well as research, development, and demonstration of the integrated systems with strong partnerships from the landscapes and watersheds where biomass is planted all the way to the many applications.
Book
436 KB : digital, PDF file.
Fact sheet summarizing NREL's techno-economic analysis and life-cycle assessment capabilities to connect research with future commercial process integration, a critical step in the scale-up of biomass conversion technologies.
Book
p. 35-37 : digital, PDF file.
Here, one of the major goals of the U.S. Department of Energy (DoE) is to achieve energy savings with a corresponding reduction in the carbon footprint. With this in mind, the DoE sponsored the Induction Coupled Thermomagnetic Processing (ITMP) project with major partners Eaton Corp., Ajax Tocco Magnethermic, and Oak Ridge National Laboratory (ORNL) to evaluate the viability of processing metals in a strong magnetic field.
Book
59 p. : digital, PDF file.
Socio-economic sustainability indicators that have been proposed previously for terrestrial bioenergy were evaluated for applicability to algal biofuels. Indicators developed for terrestrial bioenergy were found to be appropriate and sufficient for algae biofuels, meeting the selection criteria of practicality, wide applicability, predictability in response to management, anticipation of future changes, adaptability to multiple scales where possible, ability to integrate multiple dimensions, and non-redundancy. The 16 indicators fall into the categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability. None of the indicators have yet been measured in published sustainability assessments for commercial facilities. Indicators estimated for various scenarios in the scientific literature include the profitability indicators return on investment and net present value, and the resource conservation indicator, fossil energy return on investment. The food security indicator, percent change in food price volatility, is easy to estimate at zero if agricultural lands are not used. Some indicators, such as the energy security indicators energy security premium and fuel price volatility and the external trade indicators terms of trade and trade volume cannot be projected into the future with accuracy, so they will not be measured prior to significant commercialization of algal biofuels. Furthermore, the list of proposed sustainability indicators may be adjusted to particular purposes and contexts. Together with environmental sustainability indicators, these socioeconomic sustainability indicators should contribute to sustainability assessments for algal biofuels.
Book
1 online resource (67 p. ) : digital, PDF file.
The Cities-LEAP technical report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities, explores how a sample of cities incorporates data into making energy-related decisions. This report provides the foundation for forthcoming components of the Cities-LEAP project that will help cities improve energy decision making by mapping specific city energy or climate policies and actions to measurable impacts and results.
Book
1 online resource (p. 192-203 ) : digital, PDF file.
Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.
Book
1 online resource (84 pp. ) : digital, PDF file.
NREL's Sustainability Program plays a vital role bridging research and operations - integrating energy efficiency, water and material resource conservation and cultural change - adding depth in the fulfillment of NREL's mission. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called "The Voice of NREL" gives an inside perspective of how to become more sustainable while at the same time addressing climate change.
Book
1 online resource (40 p. ) : digital, PDF file.
This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Sustainability Platform Review meeting.
Book
1 online resource (98 pp. ) : digital, PDF file.
This document reports on NREL's 'Campus of the Future, ' which leverages partnerships and showcases sustainable energy on and near the NREL site. It is unique in that the report is based on GRI key performance indicators, that support NREL's sustainability goals.
Book
p. 861-874 : digital, PDF file.
The growing interest in US biofuels has been motivated by two primary national policy goals, (1) to reduce carbon emissions and (2) to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Furthermore, substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.
The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.
Book
1 online resource (642 p.) : digital, PDF file.
On behalf of all the authors and contributors, it is a great privilege to present the 2016 Billion-Ton Report (BT16), volume 2: Environmental Sustainability Effects of Select Scenarios from volume 1. This report represents the culmination of several years of collaborative effort among national laboratories, government agencies, academic institutions, and industry. BT16 was developed to support the U.S. Department of Energy’s efforts towards national goals of energy security and associated quality of life.
Book
1 online resource (28 p.) : digital, PDF file.
The purpose of this report is to discuss the projects implemented, utilizing Department of Energy grant funds, to support the use and understanding of renewable energy in Orange County, Florida and the Greater Orlando Area. Orange County is located in the State of Florida and is most popularly referred to as Orlando. The greater Orlando area’s current population is 1,225,267 and in 2015 was the first destination to surpass 60 million visitors. Orange County utilized grant funds to add to the growing demand for access to charging stations by installing one level 2 dual NovaCharge CT4021 electric vehicle charging station at the Orange County/University of Florida Cooperative Extension Center. The charging station is considered a “smart” charger connected to a central network operated by a third party. Data collected includes the number of charging sessions, session start and end times, the electricity usage, greenhouse gases saved and other pertinent data used for reporting purposes. Orange County continues to support the use of electric vehicles in Metro Orlando and this project continues to bring awareness to our public regarding using alternative vehicles. Additionally, we offer all visitors to the Orange County/University of Florida Cooperative Extension Center free charges for their electric vehicles 24 hours a day. Since the operation of the charging station there have been 52 unique driver users, a total of 532.2258 kg of greenhouse gas savings and 159.03 gallons of gasoline savings. The installation of the additional electric vehicle charging station is part of a county-wide goal of promoting implementation of renewable energy technologies as well as supporting the use of electric vehicles including the Drive Electric Orlando & Florida programs. http://driveelectricorlando.com/ & ; http://www.driveelectricflorida.org/ . Grant funds were also used for Outreach and Educational efforts. Educational efforts about renewable energy were accomplished through the continued support as well as a proposed expansion and potential relocation of the Climate Change Education Center. The growth of the Climate Change Education Center focused on 2 educational subsectors. The first educational sector focused on an apprenticeship with university students. The second sector Orange County partnered with a hospitality college that held seminars to educate students in sustainability best practices that would influence the industry as a whole as students take jobs around the U.S. and other parts of the world. Orange County completed five of the originally proposed six educational seminars. The first seminar focused on community based social marketing techniques for driving sustainable behavior changes. The second seminar held was a green team workshop. The third seminar focused on urban sustainability planning. The fourth and fifth seminars held were Florida Energy Code workshops for building inspectors. A sixth transit oriented development seminar in partnership with Rollins College was explored, but was not conducted because the proposed on campus venue was not accessible for an extended period of time due to renovations. Additionally, an ENERGY STAR training program was conducted with students from the University of Central Florida; three of the five buildings assessed received ENERGY STAR ratings; one student completed the training and received their certification as an ENERGY STAR Specialist. Background: Location: Orange County is located in the central region of the State of Florida and is most popularly known for including the City of Orlando. The greater Orlando area’s current population is 1,225,267 and is home to large corporations such as Walt Disney World, Universal Studios Orlando, Ritz Carlton, Darden Restaurants, and the nation’s second largest convention center. Opportunities Identified: Encouraging Sustainability in Major Sectors: The Central Florida economy is largely dependent on the hospitality industry and in 2015 it was ...
Book
1 online resource (p. 435-446 ): digital, PDF file.
A framework for selecting and evaluating indicators of bioenergy sustainability is presented. This framework is designed to facilitate decision-making about which indicators are useful for assessing sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability indicators in the United States and Europe are reviewed. The first steps of the framework for indicator selection are defining the sustainability goals and other goals for a bioenergy project or program, gaining an understanding of the context, and identifying the values of stakeholders. From the goals, context, and stakeholders, the objectives for analysis and criteria for indicator selection can be developed. The user of the framework identifies and ranks indicators, applies them in an assessment, and then evaluates their effectiveness, while identifying gaps that prevent goals from being met, assessing lessons learned, and moving toward best practices. The framework approach emphasizes that the selection of appropriate criteria and indicators is driven by the specific purpose of an analysis. Realistic goals and measures of bioenergy sustainability can be developed systematically with the help of the framework presented here.
Book
1 online resource (2 ) : digital, PDF file.
This fact sheet summarizes key accomplishments and successes of the Bioenergy Technologies Office in 2014.
Book
1 online resource (3.6 MB ) : digital, PDF file.
This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.
Book
1 online resource (2 files ) : digital, PDF file.
Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.
Book
1 online resource (32 p. ) : digital, PDF file.
The overall goal of this project is to create a Tribal Energy Action Plan that will serve as the Tribe's blueprint for creating long term energy self sufficiency. The Plan will be developed with input from a committed group of key stakeholders and landowners in the area, will be based on sound data and research, and will address both supply side options of the development of sustainable energy sources, as well as demand-side options for reducing energy consumption. The resulting plan will include defined comprehensive energy strategies and built upon a baseline assessment of where the Tribe currently is in terms of alternative and renewable energy activities; a vision of where the Tribe wants to go; and an action plan of how the Tribe will reach its vision including the identification of viable energy options based on the long-term strategic plan of the Tribe.
Book
1 online resource (p. 300-301 ): digital, PDF file.
The presentation provides an overview of the Biodiesel Cellulosic Ethanol Research Project (Hendry County Sustainable Biofuels Center). It summarizes the project history, timeline, budget, partners, objectives, goals, future plans and in closer detail reviews the used approaches and technical accomplishments. The main project goals were (1) developing strategies and tools that assist in the creation of economically and environmentally sustainable bioenergy industries within ecologically-sensitive regions such as South Florida and, in particular, the greater Everglades, (2) using these bioenergy strategies and tools in evolving the existing agricultural, urban, and ecological sectors towards more sustainable structures and practices and (3) using bioenergy as a focal point in the larger effort to mitigate climate change and sea level rise, realities with particularly catastrophic consequences for South Florida. The project started on Oct 1, 2010 and ended on Feb 28, 2013. It yearly average budget was $369,770, with the Dept. of Energy annual cost share of $317,167. The main project partners were Hendry County, University of Florida - Institute of Food and Agricultural Sciences, Intelligentsia International, Inc., Edison State College and University of South Florida. Used approaches, main accomplishments and results in the categories of (1) technical research, (2) education and (3) business development are presented in detail. The project uniqueness is mainly related to the use of system approaches and integrating several systems analyses. Relevance of the project applicable to sustainability of bioenergy, food production, & restoration is explained, critical success factors are challenges are outlined and future work drafted. Finally, the main publications and presentations catalogue list is presented.
Book
1 online resource (4 ) : digital, PDF file.
This fact sheet describes how the Biomass Program and its partners combine advanced analysis with applied research to understand and address the potential environmental, economic, and social impacts of bioenergy production.
Book
3.7 MB : digital, PDF file.
The National Renewable Energy Laboratory's (NREL's) Environmental Performance Report provides a description of the laboratory's environmental management activities for 2015, including information on environmental and sustainability performance, environmental compliance activities and status, and environmental protection programs, highlights, and successes. The purpose of this report is to ensure that U.S. Department of Energy (DOE) and the public receive timely, accurate information about events that have affected or could adversely affect the health, safety, and security of the public or workers; the environment; or the operations of DOE facilities. This report meets the requirements of the Annual Site Environmental Report and is prepared in accordance with the DOE Order 231.1B, Environment, Safety and Health Reporting.
Book
1 online resource (19 p. ) : digital, PDF file.
This paper describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas via indirect gasification, gas clean-up via reforming of tars and other hydrocarbons, catalytic conversion of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. The current process configuration has similarities to conventional methanol-to-gasoline (MTG) technologies, but there are key distinctions, specifically regarding the product slate, catalysts, and reactor conditions. A techno-economic analysis is performed to investigate the production of high-octane gasoline blendstock. The design features a processing daily capacity of 2000 tonnes (2205 short tons) of dry biomass. The process yields 271 liters of liquid fuel per dry tonne of biomass (65 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90% on-stream time. The estimated total capital investment for an nth-plant is $438 million. The resulting minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. Sustainability metrics for the conversion process are quantified and assessed. The potential premium value of the high-octane gasoline blendstock is examined and found to be at least as competitive as fossil-derived blendstocks. A simple blending strategy is proposed to demonstrate the potential for blending the biomass-derived blendstock with petroleum-derived intermediates. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.
Book
1 online resource (100 p. ) : digital, PDF file.
The purpose of this report is to ensure that the U.S. Department of Energy (DOE) and the public receive timely, accurate information about events that have affected or could adversely affect the health, safety, and security of the public or workers, the environment, or the operations of DOE facilities. This report meets the DOE requirements of the Annual Site Environmental Report and has been prepared in accordance with the DOE Order 231.1B Chg 1, Environment, Safety and Health Reporting.
Book
1 online resource (64 p.) : digital, PDF file.
The DoE Innovation Ecosystem Initiative was a gamechanger for Clean Energy Trust. The grant accelerated our development from a concept to a real company in 2010, seeding us with the capital to begin our mission to “accelerate the growth of clean energy businesses in the Midwest”. Now three years later, we have scores and scores of partners which fund us through sponsorship donations to our programs, and we have played a key role in launching several new companies, and helping them acquire funding and reach their milestones. In three years we have grown from two people to nine, now with an annual budget of over $3M. We started with the following simple plan (verbatim from our original submission): “The short-term objective of ICE is to fortify and enhance the platform for collaboration necessary to create a robust ecosystem for clean energy innovation. This includes launching a number of initiatives designed to source, evaluate, and launch new clean energy businesses derived from university research.
Book
1 online resource (2 pp. ) : digital, PDF file.
The parking garage fact sheet highlights the many features of NREL's garage, including energy efficiency, renewable energy, water conservation, building materials, and waste minimization.
The survival of Florida’s biodiversity and economy is dependent on finding ways to balance farm economics with proper management of water and other natural resources. Taking on this challenge of maximizing the delivery of ecosystems services from agricultural production systems is the mandate of the Hendry County Sustainable Biofuels Center. Given that sea level rise is the overarching, long-term threat to the south Florida and its ecosystems, the most valuable ecosystems services for the state of Florida are those that mitigate climate change. Biofuels are put forward as one approach to forestalling climate change, but its value as an industry in providing this and other ecosystem services is unproven. The Sustainable Biofuels Center has developed a set of programs to both document and enhance the ecosystems services values of the evolving Florida biofuels industry. The Center engages in agricultural systems evaluation, sustainability indexing and sustainability research. Methods employed for documenting ecosystems services and costs include Life Cycle Assessment, Emergy Analysis, and optimization of cost-benefit functions. Radically new farming and economic compensation systems must be created and implemented if we are to achieve a successful agricultural business model built upon balanced revenue streams from these varied services. Accordingly, the Center also supports field research and demonstration projects to document the capacity for innovative farming systems to deliver ecosystems services such as water storage. To help promote the inclusion of ecosystems services considerations in farm operations, the program includes curriculum development at both the K-12 and college level, as well as programs to bring diverse stakeholders in to collaborative visioning process. Lastly, since county governments are often the level where new industry seek entry to the landscape, the Center is also developing metrics and tools through which economic development officers can evaluate business developer requests for tax breaks, land use changes and various other permissions and incentives against the economic and ecological benefits as well as any natural resource costs. Solving the underlying problem requires that agricultural lands provide society with a more balanced set of values in the form of food, energy, and ecosystem services through proper water, nutrient, and soil management. County-level programs can help realize that vision.
What does Sustainability mean, and why should people in the thermophysical properties business care? This paper will describe sustainability in the context of product development, which is where much of the buzz is currently being generated. Once described, it will discuss how expectations for Sustainability are changing product lines, and then discuss the controversial issues now emerging from trying to measure Sustainability. One of the most organized efforts in the U.S. is the U.S. Green Building Council revolutionizing how the built environment is conceptualized, designed, built, used, and disposed of - and born again. The appeal of the US Green Building Council is that it has managed to checklist how to "do" Sustainability. By following this checklist, better described as a rating system, a more Sustainable product should be achieved. That is, a product that uses less energy, less water, is less noxious to the user, and consumes fewer resources. We care because these Sustainable products are viewed as preferable by a growing number of consumers and, consequently, are more valuable. One of the most interesting aspects of the Sustainability movement is a quantitative assessment of how sustainable a product is. Life Cycle Assessment techniques (not to be confused with life cycle economic costs) developed since the early 1990s are gaining ground as a less biased method to measure the ultimate "bad" consequences of creating a product (depletion of natural resources, nutrification, acid rain, air borne particulates, solid waste, etc.). For example, one assertion is that these studies have shown that recycling can sometimes do more environmental harm than good.
Book
1 online resource (70 p.) : digital, PDF file.
NREL's Site Sustainability Plan FY 2015 reports on sustainability plans for the lab for the year 2015 based on Executive Order Goals and provides the status on planned actions cited in the FY 2014 report.

Looking for different results?

Modify your search: Remove limit(s) Search all fields

Search elsewhere: Search WorldCat Search library website