Search results

RSS feed for this result

75,024 results

Book
PDF-file: 4 pages; size: 42.7 Kbytes
Abstract not provided
Book
1 online resource (29 p. ) : digital, PDF file.
The primary goals of the surveys were to: 1) collect minutes of bird activity within Site 300, 2) consider relative abundance of the different bird species occurring within the Site, 3) collect behavioral information, and 4) provide compelling evidence to determine the status of the Site as a migration corridor or migration stopover site. To this end, two survey types were conducted: avian point counts were conducted on a monthly basis from February 2014 through January 2016 and migration surveys were conducted over two three-month periods from September 2014 through November 2014, and September 2015 through November 2015. These two surveys types provided the opportunity to observe avian species in a variety of conditions across a two year period. Whenever possible or relevant, the observations of either survey were used to inform and complement the observations of the other survey in pursuit of the above goals. Both survey types are described below.
Book
1 online resource (11 p. ) : digital, PDF file.
Lawrence Livermore National Laboratory (LLNL) hosted the 2nd Annual Cross-Domain Deterrence Seminar on November 17th, 2015 in Livermore, CA. The seminar was sponsored by LLNL’s Center for Global Security Research (CGSR), National Security Office (NSO), and Global Security program. This summary covers the seminar’s panels and subsequent discussions.
Book
1 online resource (12 p. ) : digital, PDF file.
This report offers a description of the LLNL tank closure and removal plan.
Book
Article No. 24871 : digital, PDF file.
3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.
Book
PDF-file: 85 pages; size: 2.1 Mbytes
Abstract not provided
Book
1 online resource.
A hybrid ablation layer that comprises a separate under layer is applied to a material to prevent pitting resulting from laser peening. The underlayer adheres to the surface of the workpiece to be peened and does not have bubbles and voids that exceed an acceptable size. One or more overlayers are placed over and in contact with the underlayer. Any bubbles formed under the over layers are insulated from the surface to be peened. The process significantly reduces the incidence of pits on peened surfaces.
Book
1 online resource (57 p. ) : digital, PDF file.
This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – September 2015) and Phase 2 (October 2015 – September 2016).
Book
PDF-file: 12 pages; size: 0.4 Mbytes
Abstract not provided
Book
1 online resource (PDF-file: 8 pages; size): 0.7 Mbytes
Abstract not provided
Book
1 online resource.
The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.
Book
PDF-file: 8 pages; size: 0.2 Mbytes
Abstract not provided
This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was burned on 2005/03/08. The second plot, US-ARc, was left unburned as the control for experimental purposes. Aside from 2005, the region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.
This is the AmeriFlux version of the carbon flux data for the site US-ARc ARM Southern Great Plains control site- Lamont. Site Description - The ARM SGP Control site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots with identical towers, measurements at the US-ARc unburned plot are used as the experimental control. The second plot, US-Arb, was burned on 2005/03/08. Measurement comparisons between the control and burn plot are used to address questions regarding the effects of burning activities on carbon fluxes. The region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.
This is the AmeriFlux version of the carbon flux data for the site US-ARM ARM Southern Great Plains site- Lamont. Site Description - Central facility tower crop field
This is the AmeriFlux version of the carbon flux data for the site US-Dia Diablo. Site Description - The site is on land owned by Lawrence Livermore National Laboratory (Site 300) and has no grazing or management history since the 1950's except for summer-time burning of selected acres for fire management (not included in the tower footprint).
This is the AmeriFlux version of the carbon flux data for the site US-Wrc Wind River Crane Site. Site Description - Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation.
Book
1 online resource (Article No. 23105 ) : digital, PDF file.
We report that enamel, the outermost layer of teeth, is an acellular mineralized tissue that cannot regenerate; the mature tissue is composed of high aspect ratio apatite nanocrystals organized into rods and inter-rod regions. Amelogenin constitutes 90% of the protein matrix in developing enamel and plays a central role in guiding the hierarchical organization of apatite crystals observed in mature enamel. To date, a convincing link between amelogenin supramolecular structures and mature enamel has yet to be described, in part because the protein matrix is degraded during tissue maturation. Here we show compelling evidence that amelogenin self-assembles into an amyloid-like structure in vitro and in vivo. We show that enamel matrices stain positive for amyloids and we identify a specific region within amelogenin that self-assembles into β-sheets. Lastly, we propose that amelogenin nanoribbons template the growth of apatite mineral in human enamel. This is a paradigm shift from the current model of enamel development.
Book
PDF-file: 4 pages; size: 1.1 Mbytes
Abstract not provided
Book
Article No. 1273 : digital, PDF file.
Abstract not provided