Book
xxvi, 320 pages : illustrations (some color) ; 24 cm
The UK Catalysis Hub is a consortium of universities working together on fundamental and applied research to find out how catalysts work and to improve their effectiveness. The contribution of catalysis to manufacturing contributes to almost 40% of global GDP, making development and innovation within the field integral to industry.Modern Developments in Catalysis provides a review of current research and practise on catalysis, focussing on five main themes: catalysis design, environmental catalysis, catalysis and energy, chemical transformation and biocatalysis and biotransformations. Topics range from complex reactions to the intricacies of catalyst preparation for supported nanoparticles, while chapters illustrate the challenges facing catalytic science and the directions in which the field is developing. Edited by leaders of the UK Hub, this book provides insight into one of the most important areas of modern chemistry - it represents a unique learning opportunity for students and professionals studying and working towards speeding-up, improving and increasing the rate of catalytic reactions in science and industry.
(source: Nielsen Book Data)9781786341211 20170213
Science Library (Li and Ma)
Book
1 online resource
This volume of Advances in Chemical Physics is dedicated, by the contributors, to Moshe Shapiro, formerly Canada Research Chair in Quantum Control in the Department of Chemistry at the University of British Columbia and Jacques Mimran Professor of Chemical Physics at the Weizmann Institute, who passed away on December 3, 2013. It focuses primarily on the interaction of light with molecules, one of Moshe's longstanding scientific loves. However, the wide range of topics covered in this volume constitutes but a small part of Moshe's vast range of scientific interests, which are well documented in over 300 research publications and two books.
Book
1 online resource (xi, 554 pages).
  • Contributors to Volume 161 ix Preface to the Series xi Structural Analysis by X-ray Intensity Angular Cross Correlations 1 Ruslan P. Kurta, Massimo Altarelli, and Ivan A. Vartanyants Spin Relaxation in Phase Space 41 Yuri P. Kalmykov, William T. Coffey, and Serguey V. Titov Diffusion in Crowded Solutions 277 George D. J. Phillies Distribution Function Approach to the Stability of Fluid Phases 359 John J. Kozak, Jaroslaw Piasecki, and Piotr Szymczak Coarse-Graining with the Relative Entropy 395 M. Scott Shell Entropy Theory of Polymer Glass-Formation in Variable Spatial Dimension 443 Wen-Sheng Xu, Jack F. Douglas, and Karl F. Freed Polyelectrolyte Complexation 499 Samanvaya Srivastava and Matthew V. Tirrell Index 545.
  • (source: Nielsen Book Data)9781119290940 20170313
The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This is the only series of volumes available that presents the cutting edge of research in chemical physics. Includes contributions from experts in this field of research. Contains a representative cross-section of research that questions established thinking on chemical solutions Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry or chemical physics.
(source: Nielsen Book Data)9781119290940 20170313
Book
1 online resource (xvi, 409 pages) : illustrations
  • Some Basic Remarks
  • Part I Deterministic Methods
  • Numerical Differentiation
  • Numerical Integration
  • The KEPLER Problem
  • Ordinary Differential Equations
  • Initial Value Problems
  • The Double Pendulum
  • Molecular Dynamics
  • Numerics of Ordinary Differential Equations
  • Boundary Value Problems
  • The One-Dimensional Stationary Heat Equation
  • The One-Dimensional Stationary SCHRÖDINGER Equation
  • Partial Differential Equations
  • Part II Stochastic Methods
  • Pseudo Random Number Generators
  • Random Sampling Methods
  • A Brief Introduction to Monte-Carlo Methods
  • The ISING Model
  • Some Basics of Stochastic Processes
  • The Random Walk and Diffusion Theory
  • MARKOV-Chain Monte Carlo and the POTTS Model
  • Data Analysis
  • Stochastic Optimization
  • Appendix: The Two-Body Problem
  • Solving Non-Linear Equations. The NEWTON Method
  • Numerical Solution of Systems of Equations
  • Fast Fourier Transform
  • Basics of Probability Theory
  • Phase Transitions
  • Fractional Integrals and Derivatives in 1D
  • Least Squares Fit
  • Deterministic Optimization.
This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.
Book
1 online resource (380 pages) Digital: text file; PDF.
  • Preface; Contents; Chapter 1: Adhesive Bacterial Exopolysaccharides; 1.1 Introduction; 1.2 Characterization of Bacterial Exopolysaccharide Adhesins; 1.2.1 Polysaccharide Purification; 1.2.2 Polymer Length; 1.2.3 Monosaccharide Composition; 1.2.4 Alternative Composition Analysis Methods; 1.2.5 Linkage Analysis; 1.2.6 Tertiary Structural Analysis; 1.3 Polysaccharide Biosynthesis Pathways; 1.3.1 Wzx/Wzy-Dependent Pathway; 1.3.2 ABC Transporter-Dependent Pathway; 1.3.3 Synthase-Dependent Pathway; 1.4 Adhesive Exopolysaccharides; 1.4.1 Pel Polysaccharide (PEL); 1.4.1.1 PEL Biosynthesis Pathway.
  • 1.4.1.2 Modifications1.4.1.3 Interactions and Functions; 1.4.2 Psl Polysaccharide; 1.4.2.1 PSL Biosynthetic Pathway; 1.4.2.2 Interactions and Functions; 1.4.3 PNAG; 1.4.3.1 Biosynthesis; 1.4.3.2 Modification; 1.4.3.3 Interactions and Functions; 1.4.4 Holdfast; 1.4.4.1 Biosynthesis; 1.4.4.2 Modification; 1.4.4.3 Interactions and Functions; 1.5 Exopolysaccharide Adhesives in Infection; 1.6 Conclusion; References; Chapter 2: Adhesion and Adhesives of Fungi and Oomycetes; 2.1 Introduction; 2.2 Prevalence and Importance of Adhesion in Fungi and Oomycetes.
  • 2.2.1 Adhesion as Part of Many Stages of Morphogenesis in Many Fungi2.2.2 Functions of Adhesion; 2.2.3 Selected Examples of Adhesiveness as a Part of a Developmental Sequence; 2.2.3.1 Colletotrichum graminicola, Causal Agent of Anthracnose on Corn; 2.2.3.2 Blumeria graminis f. sp. hordei and f. sp. tritici, Causal Agent of Powdery Mildew of Barley and Wheat, Respectively; 2.2.3.3 Magnaporthe oryzae, Causal Agent of Rice Blast; 2.3 Challenges in Identifying Adhesives in Fungi; 2.3.1 Genetic ``Knockout, ́́``Knockin, ́́and Overexpression Strategies; 2.3.2 Biochemical Strategies.
  • 2.4 Fungal and Oomycete Glues2.4.1 Features; 2.4.2 Postulated Composition of Glues; 2.4.3 Secretion and Cross-Linking, with a Focus on Transglutaminases; 2.4.4 Cell Surface Macromolecules with Apparent Adhesive Properties; 2.4.4.1 PcVsv1, a Protein on Encysting Zoospores of Phytophthora cinnamomi; 2.4.4.2 90-kDa Mannoprotein on Macroconidia of Nectria haematococca (Anamorph Fusarium solani f. sp. cucurbitae); 2.4.4.3 Hydrophobins: The Mannoprotein SC3, a Schizophyllum commune Hydrophobin; the Class I Hydrophobin BcHpb1 of Botrytis ci ...
  • 2.4.4.4 MAD1 and MAD2 (Metarhizium Adhesion-Like Proteins) in the Entomopathic Fungus Metarhizium anisopliae2.4.4.5 Selected Glycosylphosphatidylinositol-Dependent (GPI) Cell Wall Proteins; 2.5 Fungal Adhesins; 2.6 Conclusions; References; Chapter 3: Diatom Adhesives: Molecular and Mechanical Properties; 3.1 Diatoms and Adhesion; 3.1.1 Diatom Morphology; 3.1.2 Significance of Diatom Adhesion; 3.1.3 Diatom Adhesion Strategies; 3.1.4 General Composition of Diatom Mucilages; 3.2 Adhesion and Gliding of Raphid Diatoms; 3.2.1 Adhesion and Gliding Behavior.
Many creatures use adhesive polymers and structures to attach to inert substrates, to each other, or to other organisms. This is the first major review that brings together research on many of the well-known biological adhesives dealing with bacteria, fungi, algae, and marine and terrestrial animals. As we learn more about their molecular and mechanical properties we begin to understand why they adhere so well and with this comes broad applications in areas such as medicine, dentistry, and biotechnology.
(source: Nielsen Book Data)9783319460819 20161213
Book
1 online resource (xv, 294 pages) : illustrations (some color).
  • Radiation-electron (free electron) elementary interaction.- Scattering of X-rays by distributions of free electrons.- Atoms and molecules.- X-ray absorption.- Low correlated systems: gases and dilute solutions.- Complex systems I: short-range correlations.- Complex systems II: arbitrary long-range correlations.- Crystals.- Application of kinematic diffraction.- Introduction to dynamical diffraction.
  • (source: Nielsen Book Data)9783319195537 20160619
This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. The main goal of this book is to break down the huge barrier of difficulties faced by beginners from many fields (Engineering, Physics, Chemistry, Biology, Medicine, Material Science, etc.) in using X-rays as an analytical tool in their research. Besides fundamental concepts, MatLab routines are provided, showing how to test and implement the concepts. The major difficult in analysing materials by X-ray techniques is that it strongly depends on simulation software. This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. It provides to a young student the knowledge that would take more than 20 years to acquire by working on X-rays and relying on the available textbooks. The scientific productivity worldwide is growing at a breakneck pace, demanding ever more dynamic approaches and synergies between different fields of knowledge. To master the fundamentals of X-ray physics means the opportunity of working at an infiniteness of fields, studying systems where the organizational understanding of matter at the atomic scale is necessary. Since the discovery of X radiation, its usage as investigative tool has always been under fast expansion afforded by instrumental advances and computational resources. Developments in medical and technological fields have, as one of the master girders, the feasibility of structural analysis offered by X-rays. One of the major difficulties faced by beginners in using this fantastic tool lies in the analysis of experimental data. There are only few cases where it is possible to extract structural information directly from experiments. In most cases, structure models and simulation of radiation-matter interaction processes are essential. The advent of intense radiation sources and rapid development of nanotechnology constantly creates challenges that seek solutions beyond those offered by standard X-ray techniques. Preparing new researchers for this scenario of rapid and drastic changes requires more than just teaching theories of physical phenomena. It also requires teaching of how to implement them in a simple and efficient manner. In this book, fundamental concepts in applied X-ray physics are demonstrated through available computer simulation tools. Using MatLab, more than eighty routines are developed for solving the proposed exercises, most of which can be directly used in experimental data analysis. Therefore, besides X-ray physics, this book offers a practical programming course in modern high-level language, with plenty of graphic and mathematical tools.
(source: Nielsen Book Data)9783319195537 20160619
Book
1 online resource (xvi, 318 p.) : ill. (some col.). Digital: text file; PDF.
  • Electron-molecule cross sections and rates involving rotationally, vibrationally and electronically excited states.- Reactivity and relaxation of vibrationally/rotationally excited molecules with open shell atoms.- Formation of vibrationally and rotationally excited molecules during atom recombination on surfaces.- Collisional-radiative models for atomic plasmas.- Collisional-radiative models for molecular plasmas.- Kinetic and Monte Carlo approaches to solve Boltzmann equation for the electron energy distribution functions.- Non-equilibrium plasma kinetics under discharge and post-discharge conditions: coupling problems for low pressure and atmospheric cold plasmas.- Ion transport under strong fields.- PIC (Particle In Cell ) models for low-pressure plasmas.- Negative ion H- for fusion.- Non equilibrium plasma expansion through nozzles.
  • (source: Nielsen Book Data)9781441981844 20160619
Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the book will assess fundamental concepts and theoretical formulations, based on a unified methodological approach, and explore the insight in related scientific problems still opened for the research community.
(source: Nielsen Book Data)9781441981844 20160619
Book
1 online resource : illustrations.
  • The Second Order Ehrenfest Method A Practical CASSCF Approach to Coupled Electron-Nuclear Dynamics.- Anchoring the Potential Energy Surface for the Br + H2O --> HBr + OH Reaction.-Isaiah Shavitt - Computational Chemistry Pioneer.-Comparison of one-dimensional and quasi-one-dimensional Hubbard models from the variational two-electron reduced-density-matrix method.-Steric and electrostatic effects on photoisomerization dynamics using QM/MM ab initio multiple spawning.-Theoretical Studies of the Excited States of p-Cyanophenylalanine and Comparisons with the Natural Amino Acids Phenylalanine and Tyrosine.-Singlet-Triplet Separations of Di-radicals Treated by the DEA/DIP-EOM-CCSD Methods.- Performance of Density Functionals for Computation of Core Electron Binding Energies in First-row Hydrides and Glycine.- Why Edge Inversion? Theoretical Characterization of the Bonding in the Transition States for Inversion in FnNH(3-n) and FnPH(3-n) (n=0-3).-Wave Function Analysis with Shavitt Graph Density in the Graphically Contracted Function Method.- Aspects of Size-extensivity in Unitary Group Adapted Multi-Reference Coupled Cluster Theories:The Role of Cumulant Decomposition of Spin-free Reduced Density Matrices.- Biconfluent Heun equation in quantum chemistry: Harmonium and related systems.-Spin-Orbit DFT with Analytic Gradients and Applications to Heavy Element Compounds.-Construction of complex STO-NG basis sets by the method of least squares and their applications.-Massively Parallel Spin-Orbit Configuration Interaction.-A comparison of singlet and triplet states for one- and two- dimensional graphene nanoribbons using multireference theory.-Atomic Three- and Four-Body Recurrence Formulas and Related Summations.-Effects of the second hydration shell on excited-state multiple proton transfer: Dynamics simulations of 7-azaindole:(H2O)1-5 clusters in the gas phase.-Heats of formation of the amino acids re-examined by means of W1-F12 and W2-F12 theories.-SDS: The 'static-dynamic-static' framework for strongly correlated electrons.-Trihalide cations MF3+, MCl3+ and MBr3+ , M=B, Al, Ga: Pseudo Jahn-Teller coupling, electronic spectra, and ionization potentials of MX3.-Finite-temperature full configuration interaction.-Mechanisms of f-f Hypersensitive Transition Intensities of Lanthanide Trihalide Molecules: A Spin-Orbit Configuration Interaction Study.-Loss of a C2Hn fragment from pyrene and circumcoronene.- Quantum chemical characterization of the X('A ), a(^3B ), A('B ) and B(2'A ) states of diiodomethylene and the enthalpies of formation of diiodomethylene, iodomethylene and iodomethylidyne.-A Hirshfeld interpretation of the charge, spin distribution and polarity of the dipole moment of the open shell (triplet sigma minus) phosphorous halides:PF and PCl.-Efficient evaluation of exchange integrals by means of Fourier transform of the 1/r operator and its numerical quadrature.- Anomeric Effects in Fluoro and Trifluoromethyl Piperidines: A Computational Study of Conformational Preferences and Hydration.-The Wuppertal Multireference Configuration Interaction (MRD-CI) Program System.-sigma-sigma and sigma-pi Pnicogen Bonds in Complexes H XP:PCX, for X = F, Cl, OH, NC, CN, CCH, CH , and H.-Unitary group approach to the many-electron correlation problem: Spin-dependent operators.
  • (source: Nielsen Book Data)9783662481479 20160619
In this Festschrift dedicated to the late Isaiah Shavitt (1925-2012) , selected researchers in theoretical chemistry present research highlights on major developments in the field. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format, as well as a special electronic edition. This volume provides valuable content for all researchers in theoretical chemistry, and will especially benefit those research groups and libraries with limited access to the journal.
(source: Nielsen Book Data)9783662481479 20160619
Book
1 online resource (x, 263 p.) : ill. (some color). Digital: text file; PDF.
  • Nanostructured systems for fluorescence imaging applications.- Luminescent silica nanoparticles for optical imaging.- Gold-based nanomaterials for applications in nanomedicine.- Core-shell polymer nanoparticles for photodynamic therapy of cancer.- Photoactivable surfaces for biomedical applications.- Up-converting nanoparticles for drug delivery.- Quantum dots for biomedical applications.- Engineered nanoconstructs for multimodal phototherapy.
  • (source: Nielsen Book Data)9783319229416 20160619
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
(source: Nielsen Book Data)9783319229416 20160619
Book
1 online resource.
  • The Izatt-Christensen Award in macrocyclic and supramolecular chemistry
  • Supramolecular chemistry with DNA
  • Anion, Cation and ion-pair recognition by macrocyclic and interlocked host systems
  • Perspectives in molecular tectonics
  • Three tales of supramolecular analytical chemistry
  • Robust host-guest chemistry of cucurbit[n]uril
  • Molecular recognition in biomimetic receptors
  • A lifetime walk in the realm of cyclam
  • Porosity in metal-organic compounds
  • Cyclodextrin-based supramolecular systems
  • Making the tiniest machines
  • Clipping an angel's wings
  • From lanthanide shift reagents to molecular knots
  • Texaphyrins
  • Macrocyclic coordination chemistry of resorcin[4]arenes and Pyrogalll[4]arenes
  • Dynamic control of recognition processes in host-guest systems and polymer-polymer interactions
  • Cation binders, amphiphiles, and membrane active transporters
  • Supramolecular technology
  • Synthesis of macrocyclic complexes using metal ion templates
  • Serendipity
  • Evolution of ZnII-macrocyclic polyamines to biological probes and supramolecular assembly
  • Contractile and extensile molecular systems
  • Index.
This book commemorates the 25th anniversary of the International Izatt-Christensen Award in Macrocyclic and Supramolecular Chemistry. The award, one of the most prestigious of small awards in chemistry, recognizes excellence in the developing field of macrocyclic and supramolecular chemistry Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field features chapters written by the award recipients who provide unique perspectives on the spectacular growth in these expanding and vibrant fields of chemistry over the past half century, and on the role of these awardees in shaping this growth. During this time there has been an upsurge of interest in the design, synthesis and characterization of increasingly more complex macrocyclic ligands and in the application of this knowledge to understanding molecular recognition processes in host-guest chemistry in ways that were scarcely envisioned decades earlier.
(source: Nielsen Book Data)9781119053842 20170313
Book
1 online resource (XXII, 297 p. 127 ill. in color.) : online resource. Digital: text file; PDF.
  • Introduction Section I. Propagation of laminar spherical flames Chapter 1. Flame propagation. Theoretical approaches 1. Influence of chemically active additives on flame .velocity of rich H2 + air mixtures 2. Concentration limits of combustion in rich hydrogen-air mixtures in the presence of inhibitors 3. On the nature of an upper concentration limit of flame propagation in an H2 + air mixture References Chapter 2. Flame propagation by spark discharge initiation 4. Influence of inert additives on the time of formation of steady spherical flame front of mixtures of natural gas and isobutylene with oxygen under spark initiation 5. Influence of inert and active additives on the features of initiation and propagation of laminar spherical flames a t atmospheric pressure 6. Numerical investigation of effects of surface recombination and initiation for laminar hydrogen flames at atmospheric pressure 7. Investigation into regularities of lean hydrogen-air mixtures combustion at atmospheric pressure by means of high-speed cinematography References Chapter 3. Ignition and flame propagation in heated vessels 8. Investigation into thermal ignition in chain oxidation of hydrogen, natural gas, and isobutene by means of high-speed color cinematography 9. Investigation into spontaneous ignition of propane-air and n-pentane-air mixtures in heated vessel at atmospheric pressure by means of high-speed color cinematography 10. On the features of the negative temperature coefficient phenomenon in combustion of n-pentane-air mixtures 11. Investigation into spontaneous ignition of hydrogen-air mixtures in a heated reactor at atmospheric pressure by means of high-speed color cinematography References Chapter 4. Some features of kinetic mechanisms of gaseous combustion 12. Initiation of hydrogen flame by a local source 13. Various influence of active chemical additives on hydrogen and hydrocarbons combustion References Section 2. Unsteady gaseous combustion Chapter 1. Instabilities in gaseous combustion 1. Flame propagation regimes at combustion of lean hydrogen-air mixtures in the presence of additives at central spark initiation at atmospheric pressure 2. Cellular combustion at transition of spherical flame front to flat front at initiated ignition of methane-air, methane-oxygen and n-pentane-air mixtures 3. Establishment of some features of propagation of unstable flames by 3D optical spectroscopy and color speed cinematography 4. Acoustic instabi lities in hydrogen-air mixtures in the closed reactor at the central spark initiation References Chapter 2. Flame interaction with obstacles 5. Interaction of spherical flames of hydrogen-air and methane-air mixtures in the closed reactor at the central spark initiation with close-meshed obstacles 6. Interaction of laminar flames of methane-air mixtures with close-meshed spherical and planar obstacles in closed cylindrical reactor at spark discharge initiation 7. Non-steady propagation of single and counter flames in hydrogen-oxygen and natural gas-oxygen mixtures in closed cylindrical vessels at spark initiation in initially motionless gas 8. Penetration of flames of methane-oxygen mixtures through spherical and planar obstacles in closed cylindrical reactor 9. Interaction of laminar flames of natural gas-oxygen mixtures with planar obstacles, diffusers and confu sers References Section 3. Detonation limits in gaseous systems 1. Contemporary approaches to the description of supersonic combustion 2. Influence of an acoustic resonator on flame propagation regimes in spark initiated H2 combustion in cylindrical reactor in the vicinity of the lower detonation limit 3. Influence of small chemical additives on the velocity of detonation wave and the detonation limit in rich hydrogen mixtures References Section 4. The role of disperse phase in combustion processes Chapter 1. Phase formation in combustion and pyrolysis 1. Factors determ ining phase fo rmation in the heterogeneous chain oxidation of dichlorosilane at low pressures 2. Formation of liquid and solid dusty crystals in gas-phase combustion reactions by the example of dichlorosilane oxidation 3. Thermal decomposition of dichlorosilane. Formation of threadlike nanostructures of silicon and silicon carbide by means of the method of chemical vapor deposition References Chapter 2. Features of combustion of coal gas suspensions 4. Features of thermal ignition of coal gas suspensions, containing natural gas and oxygen 5. Thermal ignition of coal powders in the presence of natural gas, oxygen and chemically active ad ditives 6. Investigation into ignition of coal powders in the presence of oxygen and natural gas by means of high-speed cinematography 7. Suppression of ignition of coal powders in the presence of oxygen and natural gas with small additives of vapor of octadecafluorodecahydronaphthalene C10F18 References Final remarks Acknowledgements.
  • (source: Nielsen Book Data)9783319259321 20160619
This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.
(source: Nielsen Book Data)9783319259321 20160619
Book
1 online resource. Digital: text file; PDF.
  • Introduction.- Non-Relativistic QED.- Dispersion Interaction Between Two Atoms or Molecules.- Inclusion of Higher Multipole Moments.- van der Waals Dispersion Force Between Three Atoms or Molecules.- Three-Body Dispersion Energy Shift: Contributions from Higher Electric Multipoles.
  • (source: Nielsen Book Data)9783319456041 20170117
This book provides details of the calculation of the interaction between two neutral polarizable atoms or molecules using molecular quantum electrodynamics (QED). To better understand the origin of this force, it briefly outlines molecular QED theory, the well-known van der Waals dispersion potential first evaluated by Casimir and Polder, who accounted for retardation effects. It presents different calculation schemes for the evaluation of the dispersion potential and also discusses energy shifts involving electric quadrupole and octupole moments, along with discriminatory dispersion potentials. Further, it explores in detail non-additive dispersion interaction energies between three-bodies, as well as the effects of higher multipole moment correction terms, and provides results for specific geometries such as collinear and equilateral triangles. Lastly, it computes near and far-zone asymptotic limits for both pair and many-body potentials, with the former shown to agree with less rigorous semi-classical calculations.
(source: Nielsen Book Data)9783319456041 20170117
Book
1 online resource (vi, 266 pages) : illustrations (some color).
  • From the content: Preface
  • Local random phase approximation with projected oscillator orbitals
  • Orthogonality-constrained Hartree-Fock and perturbation theory for high-spin open-shell excited states
  • On the non-integer number of particles in molecular system domains: treatment and description.-Spin contamination and noncollinearity in general complex Hartree-Fock wave functions.-Partial-wave decomposition of the ground-state wavefunction of the two-electron harmonium atom.-Use of graphics processing units for efficient evaluation of derivatives of exchange integrals by means of Fourier transformation.
In this Festschrift dedicated to the 60th birthday of Péter R. Surján, selected researchers in theoretical chemistry present research highlights on major developments in the field. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format, as well as a special electronic edition. This volume provides valuable content for all researchers in theoretical chemistry and will especially benefit those research groups and libraries with limited access to the journal.
Book
1 online resource (874)
Book
1 online resource.
  • Preface xi Foreword xvii List of Symbols xix 1 Introduction 1 1.1 Thermodynamic Quantities and their Interrelationships 5 1.1.1 General Thermodynamics 5 1.1.2 Solution Thermodynamics 15 Further Reading 37 2 Roasting of Sulfide Minerals 39 2.1 Methods of Roasting 40 2.2 Objectives 41 2.3 Chemistry of Roasting 42 2.4 Thermodynamics of Roasting 43 2.5 Kinetics of Roasting 47 2.6 Predominance Area Diagrams as a Useful Guide in Feed Preparation 51 2.7 Problems 53 References 68 3 Sulfide Smelting 71 3.1 Matte Smelting of Chalcopyrite 72 3.1.1 Flash Smelting 74 3.1.2 Submerged Tuyere Smelting 76 3.1.3 Matte Converting 76 3.1.4 Ausmelt/Isasmelt: Top Submerged Lancing (TSL) Technology 80 3.2 Matte Smelting of Galena 83 3.3 Matte Smelting of Nickel Sulfide 85 3.3.1 Theory of Direct Conversion of Molten Nickel Sulfide into Nickel 87 3.4 Continuous Converting 89 3.4.1 Noranda Continuous Converting Process 90 3.4.2 Outokumpu Flash Converting Process 90 3.4.3 Mitsubishi Continuous Converting Process 91 3.5 Direct Metal Extraction from Concentrates 92 3.5.1 Outokumpu Flash Smelting Process 93 3.5.2 Mitsubishi Process 94 3.6 Problems 96 References 100 4 Metallurgical Slag 103 4.1 Structure of Oxides 103 4.1.1 Role of Ion Dimension 104 4.1.2 Metal Oxygen Bonds 106 4.2 Structure of Slag 108 4.3 Properties of Slag 110 4.3.1 Basicity of Slag 110 4.3.2 Oxidizing Power of Slag 112 4.3.3 Sulfide Capacity of Slag 112 4.3.4 Electrical and Thermal Conductivity 113 4.3.5 Viscosity 113 4.3.6 Surface Tension 117 4.3.7 Diffusivity 117 4.4 Constitution of Metallurgical Slag 118 4.4.1 State of Oxidation of Slag 120 4.5 Slag Theories 125 4.5.1 Ionic Theories 126 4.5.2 Molecular Theory 130 4.6 Problems 131 References 143 5 Reduction of Oxides and Reduction Smelting 145 5.1 Reduction Methods 146 5.2 Thermodynamics of Reduction of Oxides 147 5.2.1 Metallothermic Reduction 148 5.2.2 Thermal Decomposition 154 5.2.3 Reduction with Carbon Monoxide 155 5.2.4 Reduction with Hydrogen 159 5.3 Kinetics of Reduction of Oxides 161 5.3.1 Chemical Reaction with Porous and Nonporous Product Film 162 5.4 Commercial Processes 170 5.4.1 Production of Iron 170 5.4.2 Production of Zinc 174 5.4.3 Production of Tungsten and Molybdenum 177 5.5 Problems 179 References 196 6 Interfacial Phenomena 199 6.1 Precipitation 201 6.2 Nucleation of Gas Bubbles in a Liquid Metal 205 6.2.1 Role of Interfaces in Slag Metal Reactions 208 6.3 Emulsion and Foam 209 6.4 Froth Flotation 211 6.5 Other Applications 213 6.6 Problems 214 References 230 7 Steelmaking 233 7.1 Steelmaking Processes 234 7.1.1 Bessemer Process 234 7.1.2 Open Hearth Process 235 7.1.3 Electric Arc Furnace (EAF) Process 236 7.1.4 Top-Blown Basic Oxygen Converter Process 236 7.1.5 Rotating Oxygen-Blown Converter Process 238 7.1.6 Bottom-Blown Oxygen Converter Process 239 7.1.7 Hybrid/Bath Agitated/Combined-Blown Process 240 7.2 Physicochemical Principles 242 7.2.1 Sulfur Reactions 242 7.2.2 Phosphorus Reactions 246 7.2.3 Silicon Reactions 250 7.2.4 Manganese Reactions 251 7.2.5 Carbon Reactions 253 7.2.6 Kinetics of Slag Metal Reactions 256 7.3 Pre-treatment of Hot Metal 261 7.3.1 External Desiliconization 262 7.3.2 External Desulfurization 262 7.3.3 External Dephosphorization 262 7.3.4 Simultaneous Removal of Sulfur and Phosphorus 263 7.4 Chemistry of Refining 264 7.4.1 Bessemer Process 264 7.4.2 Open Hearth Process 266 7.4.3 Electric Arc Furnace (EAF) Process 266 7.4.4 Top-Blown Basic Oxygen Converter Process 267 7.4.5 Rotating Oxygen-Blown Converter Process 272 7.4.6 Bottom-Blown Oxygen Converter Process 274 7.4.7 Hybrid/Bath Agitated/Combined-Blown Process 276 7.5 Problems 279 References 286 8 Secondary Steelmaking 289 8.1 Inert Gas Purging (IGP) 290 8.2 Ladle Furnace (LF) 291 8.3 Deoxidation 291 8.3.1 Choice of Deoxidizers 293 8.3.2 Complex Deoxidizers 294 8.3.3 Vacuum Deoxidation 299 8.3.4 Deoxidation Practice 299 8.3.5 Removal of Deoxidation Products 300 8.4 Stainless Steelmaking 301 8.4.1 Physicochemical Principles 302 8.4.2 Stainless Steelmaking Processes 305 8.5 Injection Metallurgy (IM) 307 8.6 Refining with Synthetic Slag 309 8.7 Vacuum Degassing 311 8.7.1 Nitrogen in Iron and Steel 312 8.7.2 Hydrogen in Iron and Steel 315 8.7.3 Vacuum Treatment of Steel 319 8.8 Problems 325 References 348 9 Role of Halides in Extraction of Metals 351 9.1 Preparation of Halides 354 9.1.1 Complex Fluoride Processes 354 9.1.2 Halogenation of Oxides 355 9.1.3 Halogenation of Ferro-Alloys 359 9.1.4 Crystallization from Aqueous Solution 360 9.2 Purification of Chlorides 362 9.2.1 Purification of Titanium Tetrachloride 363 9.2.2 Purification of Columbium Pentachloride 363 9.2.3 Purification of Vanadium Tetrachloride 363 9.3 Metal Production 364 9.3.1 Metallothermic Reduction 365 9.3.2 Fused Salt Electrolytic Process 369 9.4 Purification 369 9.4.1 Disproportionate Process 369 9.4.2 Iodide Process 370 9.5 Problems 370 References 380 10 Refining 383 10.1 Principle 384 10.2 Methods of Refining 384 10.2.1 Fire Refining 385 10.2.2 Metal Metal Refining 391 10.2.3 Metal Gas Refining 394 10.2.4 Miscellaneous Group 400 10.3 Ultra-purification 400 10.3.1 Zone Refining 400 10.3.2 Electro-transport 403 10.3.3 Iodide Decomposition 404 10.4 Refining along with Melting and Consolidation 409 10.5 Problems 410 References 420 11 Hydrometallurgy 423 11.1 Leaching 425 11.1.1 Leaching Methods 427 11.2 Breakdown of Refractory Minerals 431 11.2.1 Concentrated Sulfuric Acid Breakdown 432 11.2.2 Concentrated Alkali Breakdown 432 11.3 Physicochemical Aspects of Leaching 433 11.3.1 Thermodynamics of Aqueous Solutions 433 11.3.2 Stability Limit of Water 435 11.3.3 Potential-pH Diagrams 437 11.3.4 Electrochemical Phenomenon in Leaching 444 11.3.5 Kinetics of Leaching 448 11.4 Treatment of Leach Liquor 465 11.4.1 Chemical Precipitation 466 11.4.2 Fractional Crystallization 467 11.4.3 Ion Exchange 468 11.4.4 Solvent Extraction 476 11.5 Recovery of Metals from Leach Liquor 492 11.5.1 Precipitation of Metal Sulfides 492 11.5.2 Cementation 495 11.5.3 Gaseous Reduction 502 11.6 Problems 507 References 519 12 Electrometallurgy 523 12.1 Principle 525 12.1.1 Cell Potential 527 12.1.2 Discharge Potential 530 12.1.3 Current and Energy Efficiency 532 12.2 Applications 534 12.2.1 Electrowinning 534 12.2.2 Electrorefining 545 12.3 Problems 549 References 556 Appendixes 559 Index 585.
  • (source: Nielsen Book Data)9781119078333 20170313
This book covers various metallurgical topics, viz. roasting of sulfide minerals, matte smelting, slag, reduction of oxides and reduction smelting, interfacial phenomena, steelmaking, secondary steelmaking, role of halides in extraction of metals, refining, hydrometallurgy and electrometallurgy. Each chapter is illustrated with appropriate examples of applications of the technique in extraction of some common, reactive, rare or refractory metal together with worked out problems explaining the principle of the operation.
(source: Nielsen Book Data)9781119078333 20170313
Book
1 online resource (IX, 234 pages) : illustrations (some color). Digital: text file; PDF.
  • Polymeric Hydrogels: A Review of Recent Developments.- Conducting Polymer Hydrogels.-Polysaccharide-Based Natural Hydrogels.- Protein-Based Hydrogels.- Sterculia Gum-Based Hydrogels for Drug Delivery Applications.-Antimicrobial Polymeric Hydrogels.- Bio-Polymer Based Hydrogel for the Decontamination of Organic Waste.-Chitosan and Starch-Based Hydrogels via Graft Copolymerization.
  • (source: Nielsen Book Data)9783319253206 20160619
This book is concerned with polymeric hydrogels, which are considered as one of the most promising types of new polymer-based materials. Each chapter in this book describes a selected class of polymeric hydrogels, such as superabsorbent hybrid nanohydrogels, conducting polymer hydrogels, polysaccharide-based or protein-based hydrogels, or gels based on synthetic polymers. In this way, the book also addresses some of the fascinating properties and applications of polymeric hydrogels: they are three-dimensional, hydrophilic, polymeric networks that can absorb, swell and retain large quantities of water or aqueous fluids. In combination with metal nanoparticles, nanofibrils or nanowhiskers, which may be embedded in the gels, they find widespread applications, ranging from agriculture, and waste water treatment, over electronics, to pharmaceutical and biomedical applications. Applications mentioned in this book include electro sensors, capacitors, electromechanical actuators, and even artificial muscles.
(source: Nielsen Book Data)9783319253206 20160619
Book
1 online resource (viii, 398 pages).
Book
1 online resource (xix, 413 pages) : illustrations. Digital: text file; PDF.
  • Introduction.- Schrodinger Theory from the Perspective of 'Classical' Fields Derived from Quantal Sources.- Quantal Density Functional Theory.- The Hohenberg-Kohn Theorems and Kohn-Sham Density Functional Theory.- Physical Interpretation of Kohn-Sham Density Functional Theory.- Generalization of the Hohenberg-Kohn Theorem to the Presence of a Magnetostatic Field.- Quantal Density Functional Theory in the Presence of a Magnetostatic Field.- Generalization and Physical Interpretation of Runge-Gross Time-Dependent Density Functional Theory.- Hohenberg-Kohn and Percus-Levy-Lieb Proofs of Density Functional Theory.- Quantal Density Functional Theory of the Density Amplitude.- Quantal Density Functional Theory of the Discontinuity in the Electron-Interaction Potential Energy.- Further Insights Derived Via Quantal Density Functional Theory.- Epilogue.
  • (source: Nielsen Book Data)9783662498408 20161010
This book is on quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The time-independent QDFT constitutes a special case. The 2nd edition describes the further development of the theory, and extends it to include the presence of an external magnetostatic field. The theory is based on the 'quantal Newtonian' second and first laws for the individual electron. These laws are in terms of 'classical' fields that pervade all space, and their quantal sources. The fields are separately representative of the electron correlations that must be accounted for in local potential theory. Recent developments show that irrespective of the type of external field the electrons are subject to, the only correlations beyond those due to the Pauli exclusion principle and Coulomb repulsion that need be considered are solely of the correlation-kinetic effects. Foundational to QDFT, the book describes Schrodinger theory from the new perspective of the single electron in terms of the 'quantal Newtonian' laws. Hohenberg-Kohn density functional theory (DFT), new understandings of the theory and its extension to the presence of an external uniform magnetostatic field are described. The physical interpretation via QDFT, in terms of electron correlations, of Kohn-Sham DFT, approximations to it and Slater theory are provided.
(source: Nielsen Book Data)9783662498408 20161010
Book
1 online resource.
  • Solar water splitting using semiconductor photocatalyst powder.- Co-catalysts for water splitting.- CO2 reduction to hydrocarbons.- Biomimetic water oxidation systems.- Plasmon assisted solar energy conversion.- Heterojunctions in composite photocatalysts.- Physical limits of solar energy conversion in the Earth system.- Nanomaterial Catalysts for Water Photoelectrolysis.- Solar water splitting using photoelectrochemical cells.- Principle of natural photosynthesis.-Advanced and in-situ characterization techniques.- Perspectives.
  • (source: Nielsen Book Data)9783319230986 20160815
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
(source: Nielsen Book Data)9783319230986 20160815

Looking for different results?

Modify your search: Remove limit(s) Search all fields Search without "and" "of" "the"

Search elsewhere: Search WorldCat Search library website