1  20
Next
Number of results to display per page
1. Automorphic forms and Galois representations [2014  ]
 Symposium on Galois Representations and Automorphic Forms (2011 : University of Durham)
 Cambridge, United Kingdom : Cambridge University Press, 2014
 Description
 Book — volumes <12> ; 23 cm.
 Summary

 Preface List of contributors
 1. A semistable case of the Shafarevich conjecture V. Abrashkin
 2. Irreducible modular representations of the Borel subgroup of GL2(Qp) L. Berger and M. Vienney
 3. padic Lfunctions and Euler systems: a tale in two trilogies M. Bertolini, F. Castella, H. Darmon, S. Dasgupta, K. Prasanna and V. Rotger
 4. Effective local Langlands correspondence C. J. Bushnell
 5. The conjectural connections between automorphic representations and Galois representations K. Buzzard and T. Gee
 6. Geometry of the fundamental lemma P.H. Chaudouard
 7. The padic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings G. Chenevier
 8. La serie principale unitaire de GL2(Qp): vecteurs localement analytiques P. Colmez
 9. Equations differentielles padiques et modules de Jacquet analytiques G. Dospinescu.
 (source: Nielsen Book Data)
 Preface List of contributors
 1. On the local structure of ordinary Hecke algebras at classical weight one points M. Dimitrov
 2. Vector bundles on curves and padic Hodge theory L. Fargues and J.M. Fontaine
 3. Around associators H. Furusho
 4. The stable Bernstein center and test function for Shimura varieties T. J. Haines
 5. Conditional results on the birational section conjecture over small number fields Y. Hoshi
 6. Blocks for mod p representations of GL2(Qp) V. Paskunas
 7. From etale P+representations to Gequivariant sheaves on G/P P. Schneider, M.F. Vigneras and G. Zabradi
 8. Intertwining of ramified and unramified zeros of Iwasawa modules C. Khare and J.P. Wintenberger.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks


QA353 .A9 A925 2011 V.1  Unknown 
QA353 .A9 A925 2011 V.2  Unknown 
 Cambridge ; New York : Cambridge University Press, 2012.
 Description
 Book — xi, 272 p. : ill. ; 23 cm.
 Summary

 Preface
 1. Hyperbolic geometry A. AigonDupuy, P. Buser and K.D. Semmler
 2. Selberg's trace formula: an introduction J. Marklof
 3. Semiclassical approach to spectral correlation functions M. Sieber
 4. Transfer operators, the Selberg Zeta function and the LewisZagier theory of period functions D. H. Mayer
 5. On the calculation of Maass cusp forms D. A. Hejhal
 6. Maass waveforms on (GAMMA0(N), x) (computational aspects) Fredrik Stromberg
 7. Numerical computation of Maass waveforms and an application to cosmology R. Aurich, F. Steiner and H. Then.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA685 .H97 2012  Unknown 
 Cambridge ; New York : Cambridge University Press, 2012.
 Description
 Book — ix, 310 p. : ill. ; 23 cm.
 Summary

 List of contributors Preface
 1. Lectures on anabelian phenomena in geometry and arithmetic Florian Pop
 2. On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura
 3. Around the Grothendieck anabelian section conjecture Mohamed Saidi
 4. From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde
 5. On the MUH(G)conjecture J. Coates and R. Sujatha
 6. Galois theory and Diophantine geometry Minhyong Kim
 7. Potential modularity  a survey Kevin Buzzard
 8. Remarks on some locally Qpanalytic representations of GL2(F) in the crystalline case Christophe Breuil
 9. Completed cohomology  a survey Frank Calegari and Matthew Emerton
 10. Tensor and homotopy criteria for functional equations of ladic and classical iterated integrals Hiroaki Nakamura and Zdzislaw Wojtkowiak.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA247 .N56 2011  Unknown 
4. Fusion systems in algebra and topology [2011]
 Aschbacher, Michael, 1944
 Cambridge ; New York, N.Y. : Cambridge University Press, 2011.
 Description
 Book — vi, 320 p. : ill. ; 23 cm.
 Summary

 Introduction
 1. Introduction to fusion systems
 2. The local theory of fusion systems
 3. Fusion and homotopy theory
 4. Fusion and representation theory Appendix. Background facts about groups References List of notation Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA182.5 .A74 2011  Unknown 
5. Random fields on the sphere : representation, limit theorems and cosmological applications [2011]
 Marinucci, Domenico, 1968
 Cambridge ; New York, NY : Cambridge University Press, 2011.
 Description
 Book — ix, 341 p. : ill. ; 23 cm.
 Summary

 Preface
 1. Introduction
 2. Background results in representation theory
 3. Representations of SO(3) and harmonic analysis on S2
 4. Background results in probability and graphical methods
 5. Spectral representations
 6. Characterizations of isotropy
 7. Limit theorems for Gaussian subordinated random fields
 8. Asymptotics for the sample power spectrum
 9. Asymptotics for sample bispectra
 10. Spherical needlets and their asymptotic properties
 11. Needlets estimation of power spectrum and bispectrum
 12. Spin random fields Appendix Bibliography Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA406 .M37 2011  Unknown 
 Cambridge ; New York : Cambridge University Press, 2011.
 Description
 Book — xviii, 341 p. : ill. ; 23 cm.
 Summary

 1. Lagrangian and Hamiltonian formalism for discrete equations: symmetries and first integrals V. Dorodnitsyn and R. Kozlov
 2. Painleve equations: continuous, discrete and ultradiscrete B. Grammaticos and A. Ramani
 3. Definitions and predictions of integrability for difference equations J. Hietarinta
 4. Orthogonal polynomials, their recursions, and functional equations M. E. H. Ismail
 5. Discrete Painleve equations and orthogonal polynomials A. Its
 6. Generalized Lie symmetries for difference equations D. Levi and R. I. Yamilov
 7. Four lectures on discrete systems S. P. Novikov
 8. Lectures on moving frames P. J. Olver
 9. Lattices of compact semisimple Lie groups J. Patera
 10. Lectures on discrete differential geometry Yu. B Suris
 11. Symmetry preserving discretization of differential equations and Lie point symmetries of differentialdifference equations P. Winternitz.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA431 .S952 2008  Unknown 
 2nd ed.  London : London Mathematical Society, 2010.
 Description
 Book — xxiv, 366 p. : ill. ; 23 cm.
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA241 .A42 2010  Unavailable Checked out  Overdue Request 
QA241 .A42 2010  Unknown 
 Alinhac, S. (Serge)
 Cambridge, UK ; New York : Cambridge University Press, 2010.
 Description
 Book — ix, 118 p. ; 23 cm.
 Summary

 Preface
 1. Introduction
 2. Metrics and frames
 3. Computing with frames
 4. Energy inequalities and frames
 5. The good components
 6. Pointwise estimates and commutations
 7. Frames and curvature
 8. Nonlinear equations, a priori estimates and induction
 9. Applications to some quasilinear hyperbolic problems References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA927 .A3886 2010  Unknown 
 Berhuy, Grégory.
 Cambridge, UK ; New York : Cambridge University Press, 2010.
 Description
 Book — xi, 315 p. : ill. ; 23 cm.
 Summary

 Foreword JeanPierre Tignol Introduction Part I. An Introduction to Galois Cohomology:
 1. Infinite Galois theory
 2. Cohomology of profinite groups
 3. Galois cohomology
 4. Galois cohomology of quadratic forms
 5. Etale and Galois algebras
 6. Groups extensions and Galois embedding problems Part II. Applications:
 7. Galois embedding problems and the trace form
 8. Galois cohomology of central simple algebras
 9. Digression: a geometric interpretation of H1 (, G)
 10. Galois cohomology and Noether's problem
 11. The rationality problem for adjoint algebraic groups
 12. Essential dimension of functors References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA612.3 .B47 2010  Unknown 
 Cvetković, Dragoš M.
 Cambridge : Cambridge University Press, 2010.
 Description
 Book — xi, 364 p. : ill. ; 24 cm.
 Summary

 Preface
 1. Introduction
 2. Graph operations and modifications
 3. Spectrum and structure
 4. Characterizations by spectra
 5. Structure and one eigenvalue
 6. Spectral techniques
 7. Laplacians
 8. Additional topics
 9. Applications Appendix Bibliography Index of symbols Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA166 .C835 2010  Unknown 
 Poincaré, Henri, 18541912.
 Providence, R.I. : American Mathematical Society ; London, England : London Mathematical Society, c2010.
 Description
 Book — xx, 228 p. : ill. ; 26 cm.
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA612 .P65 2010  Unknown 
 Albeverio, Sergio.
 Cambridge, UK ; New York : Cambridge University Press, 2010.
 Description
 Book — xvi, 351 p. ; 23 cm.
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA241 .A4152 2010  Unknown 
13. Algebraic theory of differential equations [2009]
 Cambridge, UK ; New York : Cambridge University Press, 2009.
 Description
 Book — viii, 240 p. : ill. ; 23 cm.
 Summary

 Preface
 1. Galois theory of linear differential equations Michael F. Singer
 2. Solving in closed form Felix Ulmer and JacquesArthur Weil
 3. Factorization of linear systems Sergey P. Tsarev
 4. Introduction to Dmodules Anton Leykin
 5. Symbolic representation and classification of integrable systems A. V. Mikhailov, V. S. Novikov and Jing Ping Wang
 6. Searching for integrable (P)DEs Jarmo Hietarinta
 7. Around differential Galois theory Anand Pillay.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA370 .A44 2009  Unknown 
 Adams, William J.
 2nd ed.  Providence, R.I. : American Mathematical Society ; [London] : London Mathematical Society, c2009.
 Description
 Book — xii, 195 p. : ports. ; 26 cm.
 Summary

The name Central Limit Theorem covers a wide variety of results involving the determination of necessary and sufficient conditions under which sums of independent random variables, suitably standardized, have cumulative distribution functions close to the Gaussian distribution. As the name Central Limit Theorem suggests, it is a centerpiece of probability theory which also carries over to statistics. Part One of "The Life and Times of the Central Limit Theorem, Second Edition" traces its fascinating history from seeds sown by Jacob Bernoulli to use of integrals of exp(x2) as an approximation tool, the development of the theory of errors of observation, problems in mathematical astronomy, the emergence of the hypothesis of elementary errors, the fundamental work of Laplace, and the emergence of an abstract Central Limit Theorem through the work of Chebyshev, Markov and Lyapunov. This closes the classical period of the life of the Central Limit Theorem, 17131901. The second part of the book includes papers by Feller and Le Cam, as well as comments by Doob, Trotter, and Pollard, describing the modern history of the Central Limit Theorem (19201937), in particular through contributions of Lindeberg, Cramer, Levy, and Feller. The Appendix to the book contains four fundamental papers by Lyapunov on the Central Limit Theorem, made available in English for the first time.
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA273.67 .A3 2009  Unknown 
15. Random matrices : high dimensional phenomena [2009]
 Blower, G. (Gordon)
 Cambridge ; New York : Cambridge University Press, 2009.
 Description
 Book — x, 437 p. ; 23 cm.
 Summary

 Introduction
 1. Metric Measure spaces
 2. Lie groups and matrix ensembles
 3. Entropy and concentration of measure
 4. Free entropy and equilibrium
 5. Convergence to equilibrium
 6. Gradient ows and functional inequalities
 7. Young tableaux
 8. Random point fields and random matrices
 9. Integrable operators and differential equations
 10. Fluctuations and the TracyWidom distribution
 11. Limit groups and Gaussian measures
 12. Hermite polynomials
 13. From the OrnsteinUhlenbeck process to Burger's equation
 14. Noncommutative probability spaces References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA188 .B56 2009  Unknown 
16. Representation theorems in Hardy spaces [2009]
 Mashreghi, Javad.
 Cambridge, UK ; New York : Cambridge University Press, 2009.
 Description
 Book — xii, 372 p. : ill. ; 24 cm.
 Summary

 Preface
 1. Fourier series
 2. AbelPoisson means
 3. Harmonic functions in the unit disc
 4. Logarithmic convexity
 5. Analytic functions in the unit disc
 6. Norm inequalities for the conjugate function
 7. Blaschke products and their applications
 8. Interpolating linear operators
 9. The Fourier transform
 10. Poisson integrals
 11. Harmonic functions in the upper half plane
 12. The Plancherel transform
 13. Analytic functions in the upper half plane
 14. The Hilbert transform on R A. Topics from real analysis B. A panoramic view of the representation theorems Bibliography Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA331 .M4175 2009  Unknown 
 Cambridge, UK ; New York : Cambridge University Press, 2009.
 Description
 Book — vi, 390 p. : ill. ; 23 cm.
 Summary

 Preface Part I. Foundations and techniques in stochastic analysis:
 1. Random variables  without basic space Gotz Kersting
 2. Chaining techniques and their application to stochastic flows Michael Scheutzow
 3. Ergodic properties of a class of nonMarkovian processes Martin Hairer
 4. Why study multifractal spectra? Peter Morters Part II. Construction, simulation, discretisation of stochastic processes: 5, Construction of surface measures for Brownian motion Nadia Sidorova and Olaf Wittich
 6. Sampling conditioned diffusions Martin Hairer, Andrew Stuart and Jochen Vobeta
 7. Coding and convex optimization problems Steffen Dereich Part III. Stochastic analysis in mathematical physics:
 8. Intermittency on catalysts Jurgen Gartner, Frank den Hollander and Gregory Maillard
 9. Stochastic dynamical systems in infinite dimensions SalahEldin A. Mohammed
 10. Feynman formulae for evolutionary equations Oleg G.Smolyanov
 11. Deformation quantization in infinite dimensional analysis Remi Leandre Part IV. Stochastic analysis in mathematical biology:
 12. Measurevalued diffusions, coalescents and genetic inference Matthias Birkner and Jochen Blath
 13. How often does the ratchet click? Facts, heuristics, asymptotics Alison M. Etheridge, Peter Pfaffelhuber and Anton Wakolbinger.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA274.2 .T74 2009  Unknown 
18. Journal of topology [2008  ]
 Oxford, UK : Oxford University Press, c2008
 Description
 Journal/Periodical
SAL3 (offcampus storage), Science Library (Li and Ma)
SAL3 (offcampus storage)  Status 

Stacks

Request 
QA1 .J986 V.5:NO.34 2012  Available 
QA1 .J986 V.5:NO.12 2012  Available 
QA1 .J986 V.4:NO.34 2011  Available 
QA1 .J986 V.4:NO.12 2011  Available 
QA1 .J986 V.3:NO.34 2010  Available 
QA1 .J986 V.3:NO.12 2010  Available 
QA1 .J986 V.2:NO.34 2009  Available 
QA1 .J986 V.2:NO.12 2009  Available 
QA1 .J986 V.1:NO.34 2008  Available 
QA1 .J986 V.1:NO.12 2008  Available 
Science Library (Li and Ma)  Status 

Serials


Shelved by title V.9:NO.3 2016  Unknown 
Shelved by title V.9:NO.12 2016  Unknown 
Shelved by title V.8:NO.34 2015  Unknown 
Shelved by title V.8:NO.12 2015  Unknown 
Shelved by title V.7:NO.34 2014  Unknown 
Shelved by title V.7:NO.12 2014  Unknown 
Shelved by title V.6:NO.34 2013  Unknown 
Shelved by title V.6:NO.12 2013  Unknown 
19. Lectures on Kähler geometry [2007]
 Moroianu, Andrei.
 Cambridge : Cambridge University Press, 2007.
 Description
 Book — ix, 171 p. ; 24 cm.
 Summary

 Introduction Part I. Basics on Differential Geometry:
 1. Smooth manifolds
 2. Tensor fields on smooth manifolds
 3. The exterior derivative
 4. Principal and vector bundles
 5. Connections
 6. Riemannian manifolds Part II. Complex and Hermitian Geometry:
 7. Complex structures and holomorphic maps
 8. Holomorphic forms and vector fields
 9. Complex and holomorphic vector bundles
 10. Hermitian bundles
 11. Hermitian and Kahler metrics
 12. The curvature tensor of Kahler manifolds
 13. Examples of Kahler metrics
 14. Natural operators on Riemannian and Kahler manifolds
 15. Hodge and Dolbeault theory Part III. Topics on Compact Kahler Manifolds:
 16. Chern classes
 17. The Ricci form of Kahler manifolds
 18. The CalabiYau theorem
 19. KahlerEinstein metrics
 20. Weitzenbock techniques
 21. The HirzebruchRiemannRoch formula
 22. Further vanishing results
 23. Ricciflat Kahler metrics
 24. Explicit examples of CalabiYau manifolds Bibliography Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA649 .M67 2007  Unknown 
20. Lfunctions and Galois representations [2007]
 Cambridge ; New York : Cambridge University Press, 2007.
 Description
 Book — xi, 563 p. : ill. ; 23 cm.
 Summary

 Preface List of participants
 1. StarkHeegner points and special values of Lseries Massimo Bertolini, Henri Darmon and Samit Dasgupta
 2. Presentations of universal deformation rings Gebhard Bockle Eigenvarieties Kevin Buzzard
 3. Nontriviality of RankinSelberg Lfunctions and CM points Christophe Cornut and Vinayak Vatsal
 4. A correspondence between representations of local Galois groups and Lietype groups Fred Diamond
 5. Nonvanishing modulo p of Hecke Lvalues and application Haruzo Hida
 6. Serre's modularity conjecture: a survey of the level one case Chandrashekhar Khare
 7. Two padic Lfunctions and rational points on elliptic curves with supersingular reduction Masato Kurihara and Robert Pollack
 8. From the Birch and SwinnertonDyer Conjecture to noncommutative Iwasawa theory via the Equivariant Tamagawa Number Conjecture  a survey Otmar Venjakob
 9. The AndreOort conjecture  a survey Andrei Yafaev
 10. Locally analytic representation theory of padic reductive groups: a summary of some recent developments Matthew Emerton
 11. Modularity for some geometric Galois representations  with an appendix by Ofer Gabber Mark Kisin
 12. The Euler system method for CM points on Shimura curves Jan Nekova
 13. Representations irreductibles de GL(2, F ) modulo p MarieFrance Vigneras.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA247 .L42 2007  Unknown 