Inverse acoustic and electromagnetic scattering theory
 Author/Creator
 Colton, David L., 1943
 Language
 English.
 Edition
 3rd ed.
 Imprint
 New York : Springer, 2013.
 Physical description
 xiv, 405 p. : ill. ; 25 cm.
 Series
 Applied mathematical sciences (SpringerVerlag New York Inc.) ; v. 93.
Access
Available online

Stacks

Unknown
QC243.3 .S3 C65 2013

Unknown
QC243.3 .S3 C65 2013
More options
Contributors
 Contributor
 Kress, Rainer, 1941
Contents/Summary
 Bibliography
 Includes bibliographical references and index.
 Contents

 Introduction. The direct scattering problem ; The inverse scattering problem
 The Helmholtz equation. Acoustic waves ; Green's theorem and formula ; Spherical harmonics ; Spherical bessel functions ; The far field pattern
 Direct acoustic obstacle scattering. Single and doublelayer potentials ; Scattering from a soundsoft obstacle ; Herglotz wave functions and the far field operator ; The twodimensional case ; On the numerical solution in IR² ; On the numerical solution in IR³
 Illposed problems. The concept of Illposedness ; Regularization methods ; Singular value decomposition ; Tikhonov regularization ; Nonlinear operators
 Inverse acoustic obstacle scattering. Uniqueness ; Physical optics approximation ; Continuity and differentiability of the far field mapping ; Iterative solution methods ; Decomposition methods ; Sampling methods
 The Maxwell equations. Electromagnetic waves ; Green's theorem and formula ; Vector potentials ; Scattering from a perfect conductor ; Vector wave functions ; Herglotz pairs and the far field operator
 Inverse electromagnetic obstacle scattering. Uniqueness ; Continuity and differentiability of the far field mapping ; Iterative solution methods ; Decomposition methods ; Sampling methods
 Acoustic waves in an inhomogeneous medium. Physical background ; The LippmannSchwinger equation ; The unique continuation principle ; The far field pattern ; The analytic Fredholm theory ; Transmission eigenvalues ; Numerical methods
 Electromagnetic waves in an inhomogeneous medium. Physical background ; Existence and uniqueness ; The far field patterns ; The spherically stratified dielectric medium ; The exterior impedance boundary value problem
 The inverse medium problem. The inverse medium problem for acoustic waves ; Uniqueness ; Iterative solution methods ; Decomposition methods ; Sampling methods and transmission eigenvalues ; The inverse medium problem for electromagnetic waves ; Numerical examples
 References
 Index.
Subjects
Bibliographic information
 Publication date
 2013
 Responsibility
 David Colton, Rainer Kress.
 Series
 Applied mathematical sciences, 00665452 ; v. 93
 ISBN
 9781461449416
 1461449413