jump to search box

Attractors for infinite-dimensional non-autonomous dynamical systems / Alexandre N. Carvalho, José A. Langa, James C. Robinson.

Availability

Online

At the Library

Other libraries

Author/Creator:
Carvalho, Alexandre Nolasco de.
Language:
English.
Publication date:
2013
Imprint:
New York : Springer, c2013.
Format:
  • Book
  • xxxvi, 409 p. : ill. ; 25 cm.
Bibliography:
Includes bibliographical references (p. 393-403) and index.
Contents:
  • 1. The pullback attractor
  • 2. Existence results for pull back attractors
  • 3. Continuity of attractors
  • 4. Finite-dimensional attractors
  • 5. Gradient semigroups and their dynamical properties
  • 6. Semilinear differential equations
  • 7. Exponential dichotomies
  • 8. Hyperbolic solutions and their stable and unstable manifolds
  • 9. A non-autonomous competitive Lotka-Volterra system
  • 10. Delay differential equations
  • 11. The Navier-Stokes equations with non-autonomous forcing
  • 12. Applications to parabolic problems
  • 13. A non-autonomous Chafee-Infante equation
  • 14. Perturbation of diffusion and continuity of global attractors with rate of convergence
  • 15. A non-autonomous damped wave equation
  • 16. Appendix: skew-product flows and the uniform attractor.
Contributor:
Langa, José A.
Robinson, James C. (James Cooper), 1969-
Series:
Applied mathematical sciences, 0066-5452 ; v.182
Applied mathematical sciences (Springer-Verlag New York Inc.) ; v.182.
Subjects:
ISBN:
9781461445807
1461445809
9781461445814
1461445817

powered by Blacklight
© Stanford University. Stanford, California 94305. (650) 725-1064. Terms of Use | Copyright Complaints | Opt Out of Analytics
jump to top