jump to search box

Foundations and applications of statistics : an introduction using R / Randall Pruim.

Availability

At the Library

Other libraries

Author/Creator:
Pruim, Randall J.
Language:
English.
Publication date:
2011
Imprint:
Providence, R.I. : American Mathematical Society, c2011.
Format:
  • Book
  • xviii, 615 p. : ill. ; 27 cm.
Bibliography:
Includes bibliographical references and index.
Contents:
  • Machine generated contents note: ch. 1 Summarizing Data
  • 1.1.Data in R
  • 1.2.Graphical and Numerical Summaries of Univariate Data
  • 1.3.Graphical and Numerical Summaries of Multivariate Data
  • 1.4.Summary
  • Exercises
  • ch. 2 Probability and Random Variables
  • 2.1.Introduction to Probability
  • 2.2.Additional Probability Rules and Counting Methods
  • 2.3.Discrete Distributions
  • 2.4.Hypothesis Tests and p-Values
  • 2.5.Mean and Variance of a Discrete Random Variable
  • 2.6.Joint Distributions
  • 2.7.Other Discrete Distributions
  • 2.8.Summary
  • Exercises
  • ch. 3 Continuous Distributions
  • 3.1.pdfs and cdfs
  • 3.2.Mean and Variance
  • 3.3.Higher Moments
  • 3.4.Other Continuous Distributions
  • 3.5.Kernel Density Estimation
  • 3.6.Quantile-Quantile Plots
  • 3.7.Joint Distributions
  • 3.8.Summary
  • Exercises
  • ch. 4 Parameter Estimation and Testing
  • 4.1.Statistical Models
  • 4.2.Fitting Models by the Method of Moments
  • 4.3.Estimators and Sampling Distributions
  • 4.4.Limit Theorems
  • 4.5.Inference for the Mean (Variance Known)
  • 4.6.Estimating Variance
  • 4.7.Inference for the Mean (Variance Unknown)
  • 4.8.Confidence Intervals for a Proportion
  • 4.9.Paired Tests
  • 4.10.Developing New Tests
  • 4.11.Summary
  • Exercises
  • ch. 5 Likelihood-Based Statistics
  • 5.1.Maximum Likelihood Estimators
  • 5.2.Likelihood Ratio Tests
  • 5.3.Confidence Intervals
  • 5.4.Goodness of Fit Testing
  • 5.5.Inference for Two-Way Tables
  • 5.6.Rating and Ranking Based on Pairwise Comparisons
  • 5.7.Bayesian Inference
  • 5.8.Summary
  • Exercises
  • ch. 6 Introduction to Linear Models
  • 6.1.The Linear Model Framework
  • 6.2.Simple Linear Regression
  • 6.3.Inference for Simple Linear Regression
  • 6.4.Regression Diagnostics
  • 6.5.Transformations in Linear Regression
  • 6.6.Categorical Predictors
  • 6.7.Categorical Response (Logistic Regression)
  • 6.8.Simulating Linear Models to Check Robustness
  • 6.9.Summary
  • Exercises
  • ch. 7 More Linear Models
  • 7.1.Additive Models
  • 7.2.Assessing the Quality of a Model
  • 7.3.One-Way ANOVA
  • 7.4.Two-Way ANOVA
  • 7.5.Interaction and Higher Order Terms
  • 7.6.Model Selection
  • 7.7.More Examples
  • 7.8.Permutation Tests and Linear Models
  • 7.9.Summary
  • Exercises
  • Appendix A A Brief Introduction to R
  • A.1.Getting Up and Running
  • A.2.Working with Data
  • A.3.Lattice Graphics in R
  • A.4.Functions in R
  • A.5.Some Extras in the fastR Package
  • A.6.More R Topics
  • Exercises
  • Appendix B Some Mathematical Preliminaries
  • B.1.Sets
  • B.2.Functions
  • B.3.Sums and Products
  • Exercises
  • Appendix C Geometry and Linear Algebra Review
  • C.1.Vectors, Spans, and Bases
  • C.2.Dot Products and Projections
  • C.3.Orthonormal Bases
  • C.4.Matrices
  • Exercises
  • Appendix D Review of Chapters 1-4
  • D.1.R Infrastructure
  • D.2.Data
  • D.3.Probability Basics
  • D.4.Probability Toolkit
  • D.5.Inference
  • D.6.Important Distributions
  • Exercises.
Series:
Pure and applied undergraduate texts ; v. 13
Pure and applied undergraduate texts ; 13.
Subjects:
ISBN:
9780821852330
0821852337

powered by Blacklight
© Stanford University. Stanford, California 94305. (650) 725-1064. Terms of Use | Copyright Complaints | Opt Out of Analytics
jump to top