jump to search box

Introduction to membrane science and technology / Heinrich Strathmann.

Availability

At the Library

Other libraries

Author/Creator:
Strathmann, H.
Language:
English.
Publication date:
2011
Imprint:
Weinheim, Germany : Wiley-VCH Verlag & Co., c2011.
Format:
  • Book
  • xxiii, 473 p. : ill. ; 25 cm.
Bibliography:
Includes bibliographical references and index.
Contents:
  • Machine generated contents note: 1.Introduction
  • 1.1.Overview of Membrane Science and Technology
  • 1.2.History of Membrane Science and Technology
  • 1.3.Advantages and Limitations of Membrane Processes
  • 1.4.The Membrane-Based Industry: Its Structure and Markets
  • 1.5.Future Developments in Membrane Science and Technology
  • 1.5.1.Biological Membranes
  • 1.6.Summary
  • Recommended Reading
  • References
  • 2.Fundamentals
  • 2.1.Introduction
  • 2.2.Definition of Terms
  • 2.2.1.The Membrane and Its Function
  • 2.2.2.Membrane Materials and Membrane Structures
  • 2.2.2.A Symmetric and Asymmetric Membranes
  • 2.2.2.2.Porous Membranes
  • 2.2.2.3.Homogeneous Dense Membranes
  • 2.2.2.4.Ion-Exchange Membranes
  • 2.2.2.5.Liquid Membranes
  • 2.2.2.6.Fixed Carrier Membranes
  • 2.2.2.7.Other Membranes
  • 2.2.2.8.Membrane Geometries
  • 2.2.3.Mass Transport in Membranes
  • 2.2.4.Membrane Separation Properties
  • 2.2.5.Definition of Various Membrane Processes
  • Contents note continued: 2.2.5.1.Pressure-Driven Membrane Processes
  • 2.2.5.2.Activity and Concentration Gradient Driven Membrane Processes
  • 2.2.5.3.Electrical Potential and Electrochemical Potential Driven Processes
  • 2.3.Fundamentals of Mass Transport in Membranes and Membrane Processes
  • 2.3.1.Basic Thermodynamic Relationships with Relevance to Membrane Processes
  • 2.3.2.Basic Electrochemical Relationships with Relevance to Membrane Processes
  • 2.3.2.1.Electron and Ion Conductivity and Ohm's Law
  • 2.3.2.2.Ion Conductivity, Ion Mobility, and Drift Speed
  • 2.3.2.3.Coulomb's Law and the Electric Field Effect on Ions in Solution
  • 2.3.2.4.The Electric Field Effect in Electrolyte Solutions and the Debye-Hiickel Theory
  • 2.3.2.5.Electrical Dipoles and Intermolecular Forces
  • 2.3.3.Chemical and Electrochemical Equilibrium in Membrane Systems
  • 2.3.3.1.Water Dissociation Equilibrium and the pH- and pK Values of Acids and Bases
  • Contents note continued: 2.3.3.2.Osmotic Equilibrium, Osmotic Pressure, Osmosis, and Reverse Osmosis
  • 2.3.3.3.The Electrochemical Equilibrium and the Donnan Potential between a Membrane and a Solution
  • 2.3.3.4.The Donnan Exclusion of the Co-ions
  • 2.3.4.Fluxes and Driving Forces in Membrane Processes
  • 2.3.4.1.Viscous Flow through Porous Membranes
  • 2.3.4.2.Diffusion in Liquids and Dense Membranes
  • 2.3.4.3.Diffusion in Solid or Dense Materials
  • 2.3.4.4.Ion Flux and Electrical Current
  • 2.3.4.5.Diffusion of Ions in an Electrolyte Solution
  • 2.3.4.6.Ion Mobility and Ion Radius in Aqueous Solutions
  • 2.3.4.7.Migration of Ions and the Electrical Current
  • 2.3.4.8.The Transport Number and the Permselectivity of Ion-exchange Membranes
  • 2.3.4.9.Interdependence of Fluxes and Driving Forces
  • 2.3.4.10.Gas Flux through Porous Membranes, the Knudsen and Surface Diffusion and Molecular Sieving
  • 2.3.4.11.Surface Diffusion and Capillary Condensation of Gases
  • Contents note continued: 2.4.Mathematical Description of Mass Transport in Membranes
  • 2.4.1.Mass Transport Described by the Thermodynamics of Irreversible Processes
  • 2.4.2.Mass Transport Described by the Stefan-Maxwell Equations
  • 2.4.3.Membrane Mass Transport Models
  • 2.4.3.1.The Solution-Diffusion Model
  • 2.4.3.2.The Pore Flow Model and the Membrane Cut-off
  • References
  • 3.Membrane Preparation and Characterization
  • 3.1.Introduction
  • 3.2.Membrane Materials
  • 3.2.1.Polymeric Membrane Materials
  • 3.2.1.1.The Physical State of a Polymer
  • 3.2.1.2.Crystallinity and Glass Transition Temperature
  • 3.2.1.3.The Glass Transition Temperature and the Free Volume
  • 3.2.1.4.Molecular Weight of a Polymer Chain
  • 3.2.1.5.Macroscopic Structures of Polymers
  • 3.2.1.6.Polymer Chain Interaction and Its Effect on Physical Properties
  • 3.2.1.7.The Chemical Structure of the Polymer and Its Effect on Polymer Properties
  • 3.2.2.Inorganic Membrane Materials
  • Contents note continued: 3.2.2.1.Metal Membranes
  • 3.2.2.2.Glass Membranes
  • 3.2.2.3.Carbon Membranes
  • 3.2.2.4.Metal Oxide Membranes
  • 3.2.3.Liquid Membrane Materials
  • 3.3.Preparation of Membranes
  • 3.3.1.Preparation of Symmetric Porous Membranes
  • 3.3.1.1.Isotropic Membranes Made by Sintering of Powders, Stretching of Films, and Template Leaching
  • 3.3.1.2.Membranes Made by Pressing and Sintering of Polymer Powders
  • 3.3.1.3.Membranes Made by Stretching a Polymer Film of Partial Crystallinity
  • 3.3.1.4.Membranes Made by Track-Etching
  • 3.3.1.5.Membranes Made by Micro-Lithography and Etching Techniques
  • 3.3.1.6.Glass Membranes Made by Template Leaching
  • 3.3.1.7.Porous Graphite Membranes Made by Pyrolyzing Polymer Structures
  • 3.3.1.8.Symmetric Porous Polymer Membranes Made by Phase Inversion Techniques
  • 3.3.2.Preparation of Asymmetric Membranes
  • 3.3.2.1.Preparation of Integral Asymmetric Membranes
  • 3.3.3.Practical Membrane Preparation by Phase Inversion
  • Contents note continued: 3.3.3.1.Temperature-Induced Membrane Preparation
  • 3.3.3.2.Diffusion-Induced Membrane Preparation
  • 3.3.4.Phenomenological Description of the Phase Separation Process
  • 3.3.4.1.Temperature-Induced Phase Separation Process
  • 3.3.4.2.Thermodynamics of a Temperature-Induced Phase Separation of a Two-Component Mixture
  • 3.3.4.3.The Diffusion-Induced Phase Separation Process
  • 3.3.4.4.Structures of Asymmetric Membranes Obtained by Phase Inversion
  • 3.3.4.5.Identification of Various Process Parameters in the Preparation of Phase Inversion Membranes
  • 3.3.4.6.General Observation Concerning the Structure of Phase Inversion Membranes
  • 3.3.4.7.The Selection of a Polymer/Solvent/Precipitant System for the Preparation of Membranes
  • 3.3.4.8.Membrane Pre- and Post-Precipitation Treatment
  • 3.3.5.Preparation of Composite Membranes
  • 3.3.5.1.Techniques Used for the Preparation of Polymeric Composite Membranes
  • 3.3.6.Preparation of Inorganic Membranes
  • Contents note continued: 3.3.6.1.Suspension Coating and the Sol-Gel Process
  • 3.3.6.2.Perovskite Membranes
  • 3.3.6.3.Zeolite Membranes
  • 3.3.6.4.Porous Carbon Membranes
  • 3.3.6.5.Porous Glass Membranes
  • 3.3.7.Preparation of Homogeneous Solid Membranes
  • 3.3.7.1.Preparation of Liquid Membranes
  • 3.3.7.2.Preparation of Ion-Exchange Membranes
  • 3.4.Membrane Characterization
  • 3.4.1.Characterization of Porous Membranes
  • 3.4.1.1.Techniques using Microscopy
  • 3.4.1.2.Determination of Micro-and Ultrafiltration Membrane Fluxes
  • 3.4.1.3.Membrane Retention and Molecular Weight Cut-Off
  • 3.4.1.4.The Bacterial Challenge Test
  • 3.4.2.Membrane Pore Size Determination
  • 3.4.2.1.Air/Liquid and Liquid/Liquid Displacement
  • 3.4.2.2.The Bubble Point Method and Gas Liquid Porosimetry
  • 3.4.2.3.Liquid/Liquid Displacement
  • 3.4.2.4.Permporometry
  • 3.4.2.5.Thermoporometry
  • 3.4.3.Characterization of Dense Membranes
  • 3.4.3.1.Determination of Diffusivity in Dense Membranes
  • Contents note continued: 3.4.3.2.Long-Term Stability of Membranes
  • 3.4.4.Determination of Electrochemical Properties of Membranes
  • 3.4.4.1.Hydraulic Permeability of Ion-Exchange Membranes
  • 3.4.4.2.The Fixed Charge Density of Ion-Exchange Membranes
  • 3.4.4.3.Determination of the Electrical Resistance of Ion-Exchange Membranes
  • 3.4.4.4.A Membrane Resistance Measurements by Impedance Spectroscopy
  • 3.4.4.5.Perinselectivity of Ion-Exchange Membranes
  • 3.4.4.6.Membrane Permeation Selectivity for Different Counter-ions
  • 3.4.4.7.Water Transport in Ion-Exchange Membranes
  • 3.4.4.8.Characterization of Special Property Ion-Exchange Membranes
  • 3.4.4.9.The Mechanical Properties of Membranes
  • References
  • 4.Principles of Membrane Separation Processes
  • 4.1.Introduction
  • 4.2.The Principle of Membrane Filtration Processes
  • 4.2.1.The Principle of Microfiltration
  • 4.2.2.The Principle of Ultrafiltration
  • 4.2.3.The Principle of Nanofiltration
  • Contents note continued: 4.2.4.The Principle of Reverse Osmosis
  • 4.2.4.1.The Reverse Osmosis Mass Transport Described by the Solution-Diffusion Model
  • 4.2.4.2.Reverse Osmosis Transport Described by the Phenomenological Equations
  • 4.2.4.3.The Water and Salt Distribution in a Polymer Matrix and the Cluster Function
  • 4.3.The Principle of Gas and Vapor Separation
  • 4.3.1.Gas Separation by Knudsen Diffusion
  • 4.3.2.Gas Separation by Surface Diffusion and Molecular Sieving
  • 4.3.3.Gas Transport in a Dense Polymer Matrix
  • 4.3.4.The Principle of Pervaporation
  • 4.3.4.1.Material Selection for the Preparation of Pervaporation Membranes
  • 4.4.The Principle of Dialysis
  • 4.4.1.Mass Transport of Components Carrying No Electrical Charges in Dialysis
  • 4.4.2.Dialysis Mass Transport of Electrolytes in a Membrane without Fixed Ions
  • 4.4.3.Dialysis of Electrolytes with Ion-Exchange Membranes
  • 4.5.The Principle of Electromembrane Processes
  • Contents note continued: 4.5.1.Electrodialysis and Related Processes
  • 4.5.1.1.Mass Transport in Electrodialysis
  • 4.5.1.2.Electrical Current and Ion Fluxes in Electrodialysis
  • 4.5.1.3.The Transport Number and Membrane Permselectivity
  • 4.5.1.4.Membrane Counter-Ion Permselectivity
  • 4.5.1.5.Water Transport in Electrodialysis
  • 4.5.1.6.Current Efficiency in Electrodialysis
  • 4.5.1.7.Electrodialysis with Bipolar Membranes
  • 4.5.1.8.Continuous Electrodeionization
  • 4.5.1.9.Capacitive Deionization
  • 4.5.1.10.Energy Generation by Reverse Electrodialysis
  • 4.5.2.Electrochemical Synthesis with Ion-Exchange Membranes
  • 4.5.3.Ion-Exchange Membranes in Energy Storage and Conversion
  • 4.6.The Principle of Membrane Contactors
  • 4.6.1.Membrane Contactors Separating a Hydrophobic from a Hydrophilic Phase
  • 4.6.2.Membrane Contactors Used to Separate Two Immiscible Liquid Phases
  • 4.6.3.Membrane Contactors Separating a Liquid from a Gas Phase
  • 4.6.4.Membrane Distillation
  • Contents note continued: 4.6.5.Osmotic Distillation
  • 4.6.6.Supported Liquid Membranes and Facilitated Transport
  • 4.6.7.Counter-Current Coupled Facilitated Transport
  • 4.7.Membrane Reactors
  • 4.7.1.Membrane Emulsifier
  • 4.8.Membrane-Based Controlled Release of Active Agents
  • References
  • 5.Membrane Modules and Concentration Polarization
  • 5.1.Introduction
  • 5.2.Membrane Modules
  • 5.2.1.Membrane Holding Devices in Laboratory and Small-Scale Applications
  • 5.2.1.1.The Stirred Batch Cell
  • 5.2.1.2.The Sealed Membrane Point-of-Use Filter
  • 5.2.1.3.The Plate-and-Frame Membrane Module
  • 5.2.2.Industrial-Type Membrane Modules for Large Capacity Applications
  • 5.2.2.1.The Pleated Filter Membrane Cartridge
  • 5.2.2.2.The Spiral-Wound Module
  • 5.2.2.3.The Tubular Membrane Module
  • 5.2.2.4.The Capillary Membrane Module
  • 5.2.2.5.The Hollow Fiber Membrane Module
  • 5.2.3.Other Membrane Modules
  • 5.2.3.1.Membrane Modules Used in Electrodialysis and in Dialysis
  • Contents note continued: 5.3.Concentration Polarization and Membrane Fouling
  • 5.3.1.Concentration Polarization in Filtration Processes
  • 5.3.1.1.Concentration Polarization without Solute Precipitation
  • 5.3.1.2.Concentration Polarization in Turbulent Flow Described by the Film Model
  • 5.3.1.3.Concentration Polarization in Laminar Flow Membrane Devices
  • 5.3.1.4.Rigorous Analysis of Concentration Polarization
  • 5.3.1.5.Membrane Flux Decline due to Concentration Polarization without Solute Precipitation
  • 5.3.1.6.Concentration Polarization with Solute Precipitation at the Membrane Surface
  • 5.3.2.Concentration Polarization in Other Membrane Separation Processes
  • 5.3.2.1.Concentration Polarization in Dialysis and Electrodialysis
  • 5.3.2.2.Concentration Polarization in Electrodialysis
  • 5.3.2.3.Concentration Polarization in Gas Separation
  • 5.3.2.4.Concentration Polarization in Pervaporation
  • 5.3.3.Membrane Fouling and Its Causes and Consequences
  • Contents note continued: 5.3.3.1.Prevention of Membrane Fouling 3 75 References
  • 6.Membrane Process Design and Operation
  • 6.1.Introduction
  • 6.2.Membrane Filtration Processes
  • 6.2.1.Recovery Rate, Membrane Rejection, Retentate, and Filtrate Concentrations
  • 6.2.1.1.Solute Losses in Membrane Filtration Processes
  • 6.2.1.2.Operation Modes in Filtration Processes
  • 6.2.1.3.Reverse Osmosis Process Design
  • 6.2.1.A Stages and Cascades in Membrane Filtration
  • 6.2.1.5.Ultra- and Microfiltration Process Design
  • 6.2.1.6.Ultrafiltration Process Design
  • 6.2.1.7.Diafiltration
  • 6.2.2.Costs of Membrane Filtration Processes
  • 6.2.2.1.Energy Requirements in Filtration Processes
  • 6.2.2.2.Investment- and Maintenance-Related Costs in Filtration Processes
  • 6.3.Gas Separation
  • 6.3.1.Gas Separation Process Design and Operation
  • 6.3.1.1.Staging in Gas Separation and the Reflux Cascade
  • 6.3.2.Energy Consumption and Cost of Gas Separation
  • 6.4.Pervaporation
  • Contents note continued: 6.4.1.Pervaporation Modes of Operation
  • 6.4.1.1.Staging and Cascades in Pervaporation
  • 6.4.2.Pervaporation Energy Consumption and Process Costs
  • 6.5.Dialysis
  • 6.5.1.Dialysis Process and System Design
  • 6.5.1.1.Dialyzer Membrane Module Constructions
  • 6.5.2.Process Costs in Dialysis
  • 6.6.Electrodialysis and Related Processes
  • 6.6.1.Process Design in Conventional Electrodialysis
  • 6.6.1.1.Operation of the Electrodialysis Stacks in a Desalination Plant
  • 6.6.2.Process Costs in Electrodialysis
  • References.
Summary:
"The objective of this book is to provide a short but reasonably comprehensive introduction to membrane science and technology suitable for graduate students and persons with engieering or natural science background to gain a basic understanding of membranes, their function and application without studying a large number of different reference books."--P. xiii.
Subjects:
ISBN:
9783527324514
3527324518

powered by Blacklight
© Stanford University. Stanford, California 94305. (650) 725-1064. Terms of Use | Copyright Complaints | Opt Out of Analytics
jump to top