jump to search box

Percolation / Béla Bollobás, Oliver Riordan.

Availability

Online

  • dx.doi.org Cambridge Books Online Access limited to one user.

At the Library

Other libraries

Author/Creator:
Bollobás, Béla.
Language:
English.
Publication date:
2006
Imprint:
Cambridge : Cambridge University Press, 2006.
Format:
  • Book
  • x, 323 p. : ill. ; 24 cm.
Bibliography:
Includes bibliographical references and index.
Contents:
  • Preface-- 1. Basic concepts-- 2. Probabilistic tools-- 3. Percolation on Z2 - the Harris-Kesten Theorem-- 4. Exponential decay and critical probabilities - theorems of Menshikov and Aizenman & Barsky-- 5. Uniqueness of the infinite open cluster and critical probabilities-- 6. Estimating critical probabilities-- 7. Conformal invariance - Smirnov's Theorem-- 8. Continuum percolation-- Bibliography-- Index-- List of notation.
  • (source: Nielsen Book Data)
Publisher's Summary:
Percolation theory was initiated some fifty years ago as a mathematical framework for the study of random physical processes such as flow through a disordered porous medium. It has proved to be a remarkably rich theory, with applications beyond natural phenomena to topics such as network modelling. The aims of this book are twofold. First to present classical results in a way that is accessible to non-specialists. Second, to describe, for the first time in a book, recent results of Smirnov in conformal invariance, and outline the proof that the critical probability for random Voronoi percolation in the plane is 1/2. Throughout, the presentation is streamlined, with elegant and straightforward proofs requiring minimal background in probability and graph theory. Numerous examples illustrate the important concepts and enrich the arguments. All-in-all, it will be an essential purchase for mathematicians, physicists, electrical engineers and computer scientists working in this exciting area.
(source: Nielsen Book Data)
Contributor:
Riordan, Oliver.
Subjects:
ISBN:
0521872324
9780521872324

powered by Blacklight
© Stanford University. Stanford, California 94305. (650) 725-1064. Terms of Use | Copyright Complaints | Opt Out of Analytics
jump to top