Search results

541 results

View results as:
Number of results to display per page
Book
1 online resource.
Batch and Semi-batch Reactors: Practical Guides in Chemical Engineering is a cluster of short texts that provide a focused introductory view on a single subject. The full library presents a basic understanding of the main topics in the chemical process industries, allowing engineering professionals to quickly access information. Each 'pocket publication' can be easily carried or accessed electronically, giving users a highly practical and applied presentation of the first principles engineers need know on a moment's notice. The focused facts provided in each guide help users converse with experts in the field, attempt their own initial troubleshooting, check calculations, and solve rudimentary problems.
Batch and Semi-batch Reactors: Practical Guides in Chemical Engineering is a cluster of short texts that provide a focused introductory view on a single subject. The full library presents a basic understanding of the main topics in the chemical process industries, allowing engineering professionals to quickly access information. Each 'pocket publication' can be easily carried or accessed electronically, giving users a highly practical and applied presentation of the first principles engineers need know on a moment's notice. The focused facts provided in each guide help users converse with experts in the field, attempt their own initial troubleshooting, check calculations, and solve rudimentary problems.
Book
xii, 428 pages : illustrations (some color) ; 24 cm.
The book discusses the sciences of operations, converting raw materials into desired products on an industrial scale by applying chemical transformations and other industrial technologies. Basics of chemical technology combining chemistry, physical transport, unit operations and chemical reactors are thoroughly prepared for an easy understanding.
(source: Nielsen Book Data)
The book discusses the sciences of operations, converting raw materials into desired products on an industrial scale by applying chemical transformations and other industrial technologies. Basics of chemical technology combining chemistry, physical transport, unit operations and chemical reactors are thoroughly prepared for an easy understanding.
(source: Nielsen Book Data)
Chemistry & ChemEng Library (Swain)
Status of items at Chemistry & ChemEng Library (Swain)
Chemistry & ChemEng Library (Swain) Status
Stacks
TP145 .M87 2015 Unavailable At bindery Request
Book
xviii, 682 pages : illustrations ; 25 cm
  • Preface Nomenclature About the author 1 Definitions and stoichiometry 1.1 Measurement variables 1.2 Calculation of measurement variables 1.2.1 Extent of the reaction 1.2.2 Conversion 1.3 Continuous systems 1.4 Partial pressures 1.5 Method of total pressure 1.6 General properties 1.7 Solved problems 2 Chemical equilibrium 3 Kinetic of reactions 3.1 Reaction rates-definitions 3.2 Reaction rate 3.2.1 Kinetic equations 3.3 Influence of the temperature on the reaction rate 3.3.1 Reversible reactions 3.3.2 Interpretation remarks 4 Molar balance in open and closed systems with chemical reaction 4.1 Batch 4.2 Continuous stirring tank reactor 4.3 Continuous tubular reactor 5 Determination of kinetic parameters 5.1 Irreversible reaction at constant volume 5.1.1 Kinetic model of first order 5.1.2 Kinetic model of second order (global) 5.2 Irreversible reactions at variable volume 5.2.1 Irreversible of first order 5.2.2 Irreversible reactions of second order 5.3 Irreversible reactions of order n-half-life method 5.4 Reversible reactions at constant volume 5.4.1 Direct and reverse first-order elementary reaction 5.4.2 Direct and reverse second-order elementary reaction 5.5 Determination of the kinetic parameters by the differential method 5.5.1 Differential reactor 6 Kinetics of multiple reactions 6.1 Simple reactions in series 6.2 Simple parallel reactions 6.3 Continuous systems 6.4 Kinetics of complex reactions 6.4.1 Decomposition reactions 6.4.2 Parallel reactions 6.4.3 Series-parallel reactions 7 Non-elementary reactions 7.1 Classical kinetic model 7.2 Chain reactions 7.3 Theory of the transition state 8 Polymerization reactions 8.1 Reactions of thermal cracking 8.2 Kinetics of polymerization reactions 8.3 Reactions by addition of radicals 8.3.1 Initiation 8.3.2 Propagation 8.3.3 Termination 9 Kinetics of liquid-phase reactions 9.1 Enzymatic reactions 9.1.1 Kinetic model 9.1.2 Determination of the kinetic parameters 9.1.3 Effect of external inhibitors 9.1.4 Kinetics of biological fermentation 9.1.5 Mass balance 9.2 Liquid-phase reactions 9.2.1 Liquid solutions 9.2.2 Acid-base reactions 10 Heterogeneous reaction kinetics 10.1 External phenomena 10.2 Internal diffusion phenomena 10.3 Adsorption-desorption phenomena 10.3.1 Physical adsorption or physisorption 10.3.2 Chemical adsorption or chemisorption 10.3.3 Comparing physical and chemical adsorptions 10.4 Adsorption isotherms 10.5 Adsorption models 10.5.1 Langmuir model 10.5.2 Other chemisorption models 10.6 Model of heterogeneous reactions 10.6.1 Langmuir-Hinshelwood-Hougen-Watson model (LHHW) 10.6.2 Eley-Rideal model 10.6.3 Effect of the temperature and energies 10.7 Determination of the constants 10.8 Noncatalytic heterogeneous reactions 11 Kinetic exercises 11.1 Solution of kinetic exercises 11.2 Proposed exercises 12 Elementary concepts of the collision theory 12.1 Collision and reaction rates 13 Catalysis: Analyzing variables influencing the catalytic properties 13.1 Introduction 13.2 Selection of catalysts 13.3 Activity patterns 13.3.1 Model reactions 13.3.2 Cyclohexane dehydrogenation 13.3.3 Benzene hydrogenation 13.4 Conventional preparation methods of catalysts 13.4.1 Precipitation/coprecipitation methods 13.4.2 Impregnation of metals on supports 13.4.3 Ion exchange 13.5 Analyses of variables influencing final properties of catalysts 13.5.1 Influence of pH 13.5.2 Autoclaving 13.5.3 Influence of time, concentration, and impregnation cycles 13.6 Thermal treatments 13.6.1 Drying 13.6.2 Calcination 13.7 Effect of reduction temperature on interaction and sintering 13.8 Influence of the support and metal concentration over the reduction 13.9 Influence of the heating rate 13.10 Influence of vapor 13.11 Effect of temperature and reaction time 13.12 Strong metal support interaction 13.13 Experimental design-influence of parameters on the catalytic performance 13.14 Conclusion 14 Ideal reactors 14.1 Types of reactors 14.2 Definitions and concepts of residence time 14.3 Ideal reactors 14.3.1 Batch reactor 14.3.2 Continuous tank reactor 14.3.3 Continuous tubular reactor (PFR) 14.4 Ideal nonisothermal reactors 14.4.1 Adiabatic continuous reactor 14.4.2 Nonadiabatic batch reactor 14.4.3 Adiabatic batch reactor 14.4.4 Analysis of the thermal effects 15 Specific reactors 15.1 Semibatch reactor 15.2 Reactor with recycle 15.3 Pseudo-homogeneous fixed-bed reactor 15.4 Membrane reactors 16 Comparison of reactors 16.1 Comparison of volumes 16.1.1 Irreversible first-order reaction at constant volume 16.1.2 Irreversible second-order reaction at constant volume 16.1.3 Reactions at variable volume 16.2 Productivity 16.3 Yield/selectivity 16.4 Overall yield 16.4.1 Effect of reaction order 16.4.2 Effects of kinetic constants 16.4.3 Presence of two reactants 16.5 Reactions in series 17 Combination of reactors 17.1 Reactors in series 17.1.1 Calculating the number of reactors in series to an irreversible first-order reaction 17.1.2 Calculating the number of reactors in series for an irreversible second-order reaction 17.1.3 Graphical solution 17.2 Reactors in parallel 17.3 Production rate in reactors in series 17.4 Yield and selectivity in reactors in series 18 Transport phenomena in heterogeneous systems 18.1 Intraparticle diffusion limitation-pores 18.2 Effectiveness factor 18.3 Effects of intraparticle diffusion on the experimental parameters 18.4 External mass transfer and intraparticle diffusion limitations 19 Catalyst deactivation 19.1 Kinetics of deactivation 19.2 Deactivation in PFR or CSTR reactor 19.3 Forced deactivation 19.4 Catalyst regeneration 19.4.1 Differential scanning calorimetry 19.4.2 Temperature programmed oxidation 19.4.3 Catalytic evaluation 19.5 Kinetic study of regeneration 19.5.1 Balance with respect to solid (carbon) 19.5.2 Particular case 20 Exercises reactors and heterogeneous reactors 20.1 Solutions to exercises: reactors 20.2 Exercises proposed: reactors 21 Multiphase reacting systems 22 Heterogeneous reactors 22.1 Fixed bed reactor 22.1.1 Reactors in series 22.2 Fluidized bed reactor 23 Biomass-thermal and catalytic processes 23.1 Introduction 23.2 Chemical nature of raw material from biomass 23.3 Biomass pyrolysis 23.4 Pyrolysis kinetics 23.5 Biomass reactors 23.5.1 Mass balance 23.5.2 Energy balance 23.6 Bio-oil upgrading and second-generation processes 23.6.1 Hydrodeoxygenation 23.6.2 Fischer-Tropsch synthesis 24 Nonideal reactors 24.1 Introduction 24.2 Residence time distribution 24.2.1 Ideal cases 24.2.2 Variance 24.3 Mixing effects 24.3.1 Irreversible reactions 24.4 Analysis of nonideal reactors 24.4.1 Momentum 24.4.2 Mass balance 24.4.3 Energy balance 24.4.4 Analysis of boundary conditions 25 Experimental practices 25.1 Reactions in homogeneous phase 25.1.1 Free radical polymerization of styrene 25.1.2 Polymerization of isobutylene 25.2 Reactions in heterogeneous phase 25.2.1 Experimental system 25.2.2 Determination of activation energy: dehydrogenation of cyclohexane 25.2.3 Kinetic study-methane reforming with CO2-heterogeneous reaction 25.3 Performance of reactors 25.3.1 Batch reactor-hydrogenation of sucrose 25.3.2 Integral continuous flow reactor (tubular)-isomerization of xylenes 25.3.3 Goals References Subject index.
  • (source: Nielsen Book Data)
Chemical Reaction Engineering: Essentials, Exercises and Examples presents the essentials of kinetics, reactor design and chemical reaction engineering for undergraduate students. Concise and didactic in its approach, it features over 70 resolved examples and many exercises. The work is organized in two parts: in the first part kinetics is presented focusing on the reaction rates, the influence of different variables and the determination of specific rate parameters for different reactions both homogeneous and heterogeneous. This section is complemented with the classical kinetic theory and in particular with many examples and exercises. The second part introduces students to the distinction between ideal and non-ideal reactors and presents the basic equations of batch and continuous ideal reactors, as well as specific isothermal and non-isothermal systems. The main emphasis however is on both qualitative and quantitative interpretation by comparing and combining reactors with and without diffusion and mass transfer effects, complemented with several examples and exercises. Finally, non-ideal and multiphase systems are presented, as well as specific topics of biomass thermal processes and heterogeneous reactor analyses. The work closes with a unique section on the application of theory in laboratory practice with kinetic and reactor experiments. This textbook will be of great value to undergraduate and graduate students in chemical engineering as well as to graduate students in and researchers of kinetics and catalysis.
(source: Nielsen Book Data)
  • Preface Nomenclature About the author 1 Definitions and stoichiometry 1.1 Measurement variables 1.2 Calculation of measurement variables 1.2.1 Extent of the reaction 1.2.2 Conversion 1.3 Continuous systems 1.4 Partial pressures 1.5 Method of total pressure 1.6 General properties 1.7 Solved problems 2 Chemical equilibrium 3 Kinetic of reactions 3.1 Reaction rates-definitions 3.2 Reaction rate 3.2.1 Kinetic equations 3.3 Influence of the temperature on the reaction rate 3.3.1 Reversible reactions 3.3.2 Interpretation remarks 4 Molar balance in open and closed systems with chemical reaction 4.1 Batch 4.2 Continuous stirring tank reactor 4.3 Continuous tubular reactor 5 Determination of kinetic parameters 5.1 Irreversible reaction at constant volume 5.1.1 Kinetic model of first order 5.1.2 Kinetic model of second order (global) 5.2 Irreversible reactions at variable volume 5.2.1 Irreversible of first order 5.2.2 Irreversible reactions of second order 5.3 Irreversible reactions of order n-half-life method 5.4 Reversible reactions at constant volume 5.4.1 Direct and reverse first-order elementary reaction 5.4.2 Direct and reverse second-order elementary reaction 5.5 Determination of the kinetic parameters by the differential method 5.5.1 Differential reactor 6 Kinetics of multiple reactions 6.1 Simple reactions in series 6.2 Simple parallel reactions 6.3 Continuous systems 6.4 Kinetics of complex reactions 6.4.1 Decomposition reactions 6.4.2 Parallel reactions 6.4.3 Series-parallel reactions 7 Non-elementary reactions 7.1 Classical kinetic model 7.2 Chain reactions 7.3 Theory of the transition state 8 Polymerization reactions 8.1 Reactions of thermal cracking 8.2 Kinetics of polymerization reactions 8.3 Reactions by addition of radicals 8.3.1 Initiation 8.3.2 Propagation 8.3.3 Termination 9 Kinetics of liquid-phase reactions 9.1 Enzymatic reactions 9.1.1 Kinetic model 9.1.2 Determination of the kinetic parameters 9.1.3 Effect of external inhibitors 9.1.4 Kinetics of biological fermentation 9.1.5 Mass balance 9.2 Liquid-phase reactions 9.2.1 Liquid solutions 9.2.2 Acid-base reactions 10 Heterogeneous reaction kinetics 10.1 External phenomena 10.2 Internal diffusion phenomena 10.3 Adsorption-desorption phenomena 10.3.1 Physical adsorption or physisorption 10.3.2 Chemical adsorption or chemisorption 10.3.3 Comparing physical and chemical adsorptions 10.4 Adsorption isotherms 10.5 Adsorption models 10.5.1 Langmuir model 10.5.2 Other chemisorption models 10.6 Model of heterogeneous reactions 10.6.1 Langmuir-Hinshelwood-Hougen-Watson model (LHHW) 10.6.2 Eley-Rideal model 10.6.3 Effect of the temperature and energies 10.7 Determination of the constants 10.8 Noncatalytic heterogeneous reactions 11 Kinetic exercises 11.1 Solution of kinetic exercises 11.2 Proposed exercises 12 Elementary concepts of the collision theory 12.1 Collision and reaction rates 13 Catalysis: Analyzing variables influencing the catalytic properties 13.1 Introduction 13.2 Selection of catalysts 13.3 Activity patterns 13.3.1 Model reactions 13.3.2 Cyclohexane dehydrogenation 13.3.3 Benzene hydrogenation 13.4 Conventional preparation methods of catalysts 13.4.1 Precipitation/coprecipitation methods 13.4.2 Impregnation of metals on supports 13.4.3 Ion exchange 13.5 Analyses of variables influencing final properties of catalysts 13.5.1 Influence of pH 13.5.2 Autoclaving 13.5.3 Influence of time, concentration, and impregnation cycles 13.6 Thermal treatments 13.6.1 Drying 13.6.2 Calcination 13.7 Effect of reduction temperature on interaction and sintering 13.8 Influence of the support and metal concentration over the reduction 13.9 Influence of the heating rate 13.10 Influence of vapor 13.11 Effect of temperature and reaction time 13.12 Strong metal support interaction 13.13 Experimental design-influence of parameters on the catalytic performance 13.14 Conclusion 14 Ideal reactors 14.1 Types of reactors 14.2 Definitions and concepts of residence time 14.3 Ideal reactors 14.3.1 Batch reactor 14.3.2 Continuous tank reactor 14.3.3 Continuous tubular reactor (PFR) 14.4 Ideal nonisothermal reactors 14.4.1 Adiabatic continuous reactor 14.4.2 Nonadiabatic batch reactor 14.4.3 Adiabatic batch reactor 14.4.4 Analysis of the thermal effects 15 Specific reactors 15.1 Semibatch reactor 15.2 Reactor with recycle 15.3 Pseudo-homogeneous fixed-bed reactor 15.4 Membrane reactors 16 Comparison of reactors 16.1 Comparison of volumes 16.1.1 Irreversible first-order reaction at constant volume 16.1.2 Irreversible second-order reaction at constant volume 16.1.3 Reactions at variable volume 16.2 Productivity 16.3 Yield/selectivity 16.4 Overall yield 16.4.1 Effect of reaction order 16.4.2 Effects of kinetic constants 16.4.3 Presence of two reactants 16.5 Reactions in series 17 Combination of reactors 17.1 Reactors in series 17.1.1 Calculating the number of reactors in series to an irreversible first-order reaction 17.1.2 Calculating the number of reactors in series for an irreversible second-order reaction 17.1.3 Graphical solution 17.2 Reactors in parallel 17.3 Production rate in reactors in series 17.4 Yield and selectivity in reactors in series 18 Transport phenomena in heterogeneous systems 18.1 Intraparticle diffusion limitation-pores 18.2 Effectiveness factor 18.3 Effects of intraparticle diffusion on the experimental parameters 18.4 External mass transfer and intraparticle diffusion limitations 19 Catalyst deactivation 19.1 Kinetics of deactivation 19.2 Deactivation in PFR or CSTR reactor 19.3 Forced deactivation 19.4 Catalyst regeneration 19.4.1 Differential scanning calorimetry 19.4.2 Temperature programmed oxidation 19.4.3 Catalytic evaluation 19.5 Kinetic study of regeneration 19.5.1 Balance with respect to solid (carbon) 19.5.2 Particular case 20 Exercises reactors and heterogeneous reactors 20.1 Solutions to exercises: reactors 20.2 Exercises proposed: reactors 21 Multiphase reacting systems 22 Heterogeneous reactors 22.1 Fixed bed reactor 22.1.1 Reactors in series 22.2 Fluidized bed reactor 23 Biomass-thermal and catalytic processes 23.1 Introduction 23.2 Chemical nature of raw material from biomass 23.3 Biomass pyrolysis 23.4 Pyrolysis kinetics 23.5 Biomass reactors 23.5.1 Mass balance 23.5.2 Energy balance 23.6 Bio-oil upgrading and second-generation processes 23.6.1 Hydrodeoxygenation 23.6.2 Fischer-Tropsch synthesis 24 Nonideal reactors 24.1 Introduction 24.2 Residence time distribution 24.2.1 Ideal cases 24.2.2 Variance 24.3 Mixing effects 24.3.1 Irreversible reactions 24.4 Analysis of nonideal reactors 24.4.1 Momentum 24.4.2 Mass balance 24.4.3 Energy balance 24.4.4 Analysis of boundary conditions 25 Experimental practices 25.1 Reactions in homogeneous phase 25.1.1 Free radical polymerization of styrene 25.1.2 Polymerization of isobutylene 25.2 Reactions in heterogeneous phase 25.2.1 Experimental system 25.2.2 Determination of activation energy: dehydrogenation of cyclohexane 25.2.3 Kinetic study-methane reforming with CO2-heterogeneous reaction 25.3 Performance of reactors 25.3.1 Batch reactor-hydrogenation of sucrose 25.3.2 Integral continuous flow reactor (tubular)-isomerization of xylenes 25.3.3 Goals References Subject index.
  • (source: Nielsen Book Data)
Chemical Reaction Engineering: Essentials, Exercises and Examples presents the essentials of kinetics, reactor design and chemical reaction engineering for undergraduate students. Concise and didactic in its approach, it features over 70 resolved examples and many exercises. The work is organized in two parts: in the first part kinetics is presented focusing on the reaction rates, the influence of different variables and the determination of specific rate parameters for different reactions both homogeneous and heterogeneous. This section is complemented with the classical kinetic theory and in particular with many examples and exercises. The second part introduces students to the distinction between ideal and non-ideal reactors and presents the basic equations of batch and continuous ideal reactors, as well as specific isothermal and non-isothermal systems. The main emphasis however is on both qualitative and quantitative interpretation by comparing and combining reactors with and without diffusion and mass transfer effects, complemented with several examples and exercises. Finally, non-ideal and multiphase systems are presented, as well as specific topics of biomass thermal processes and heterogeneous reactor analyses. The work closes with a unique section on the application of theory in laboratory practice with kinetic and reactor experiments. This textbook will be of great value to undergraduate and graduate students in chemical engineering as well as to graduate students in and researchers of kinetics and catalysis.
(source: Nielsen Book Data)
Chemistry & ChemEng Library (Swain)
Status of items at Chemistry & ChemEng Library (Swain)
Chemistry & ChemEng Library (Swain) Status
Stacks
TP155 .S26 2014 Unknown
Book
1 online resource.
  • Single Phase Flow.- Elementary Kinetic Theory of Gases.- Multiphase Flow.- Flows of Granular Materials.- Interfacial Transport Phenomena Closures.- Chemical Reaction Engineering.- Agitation and Fluid Mixing Technology.- Bubble Column Reactors.- The Population Balance Equation.- Fluidized Bed Reactors.- Packed Bed Reactors.- Numerical Solution Methods.- Experimental Techniques.- Mathematical Theorems.- Equation of Change for Temperature for a Multicomponent System.- Governing Equations for Single Phase Flow.- D Alternative Two-Fluid Model Granular Material Kinetic.- Integral and Constitutive Equations.- Trondheim Bubble Column Model.- Index.
  • (source: Nielsen Book Data)
Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.
(source: Nielsen Book Data)
  • Single Phase Flow.- Elementary Kinetic Theory of Gases.- Multiphase Flow.- Flows of Granular Materials.- Interfacial Transport Phenomena Closures.- Chemical Reaction Engineering.- Agitation and Fluid Mixing Technology.- Bubble Column Reactors.- The Population Balance Equation.- Fluidized Bed Reactors.- Packed Bed Reactors.- Numerical Solution Methods.- Experimental Techniques.- Mathematical Theorems.- Equation of Change for Temperature for a Multicomponent System.- Governing Equations for Single Phase Flow.- D Alternative Two-Fluid Model Granular Material Kinetic.- Integral and Constitutive Equations.- Trondheim Bubble Column Model.- Index.
  • (source: Nielsen Book Data)
Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.
(source: Nielsen Book Data)
Book
1 online resource
"This resource offers a primer on simple design methods for multiphase reactors in the chemical process industries, particularly the fine chemicals industry. It provides the process design engineer with simple yet theoretically sound procedures. Different types of multiphase reactors are dealt with on an individual basis. The book focuses on the problem of predicting mass transfer rates in these reactors. It also contains finally worked examples that clearly illustrate how a highly complex MPR like the Stirred Tank Reactor (STR) can be designed using simple correlations which need only a scientific calculator"-- Provided by publisher.
"This resource offers a primer on simple design methods for multiphase reactors in the chemical process industries, particularly the fine chemicals industry. It provides the process design engineer with simple yet theoretically sound procedures. Different types of multiphase reactors are dealt with on an individual basis. The book focuses on the problem of predicting mass transfer rates in these reactors. It also contains finally worked examples that clearly illustrate how a highly complex MPR like the Stirred Tank Reactor (STR) can be designed using simple correlations which need only a scientific calculator"-- Provided by publisher.
Book
1 online resource (573 pages) : illustrations, tables
Book
xi, 364 pages : illustrations (some color) ; 24 cm.
With well over 90 per cent of all processes in the industrial chemical production being of catalytic nature, catalysis is a mature though ever interesting topic. The idea of this book is to tackle various aspects of heterogeneous catalysis from the engineering point of view and go all the way from engineering of catalysis, catalyst preparation, characterization, reaction kinetics, mass transfer to catalytic reactors and the implementation of catalysts in chemical technology. Aimed for graduate students it is also a useful resource for professionals coming from the more academic side.
(source: Nielsen Book Data)
With well over 90 per cent of all processes in the industrial chemical production being of catalytic nature, catalysis is a mature though ever interesting topic. The idea of this book is to tackle various aspects of heterogeneous catalysis from the engineering point of view and go all the way from engineering of catalysis, catalyst preparation, characterization, reaction kinetics, mass transfer to catalytic reactors and the implementation of catalysts in chemical technology. Aimed for graduate students it is also a useful resource for professionals coming from the more academic side.
(source: Nielsen Book Data)
Chemistry & ChemEng Library (Swain)
Status of items at Chemistry & ChemEng Library (Swain)
Chemistry & ChemEng Library (Swain) Status
Stacks
TP156 .C35 M87 2013 Unknown
Book
1 online resource (xix, 465 p.) : ill.
For the second edition of 'Microreactors in Organic Chemistry and Catalysis' all chapters have been revised and updated to reflect the latest developments in this rapidly developing field. This new edition has 60% more content, and it remains a comprehensive publication covering most aspects of the topic. The use of microreactors in homogeneous, heterogeneous as well as biphasic reactions is covered in the main part of the book, together with catalytic, bioorganic and automation approaches. The initial chapters also provide a solid physical chemistry background on fluidics in microdevices. Finally, a chapter on industrial applications and developments covers recent progress in process chemistry. An excellent reference for beginners and experts alike.
(source: Nielsen Book Data)
For the second edition of 'Microreactors in Organic Chemistry and Catalysis' all chapters have been revised and updated to reflect the latest developments in this rapidly developing field. This new edition has 60% more content, and it remains a comprehensive publication covering most aspects of the topic. The use of microreactors in homogeneous, heterogeneous as well as biphasic reactions is covered in the main part of the book, together with catalytic, bioorganic and automation approaches. The initial chapters also provide a solid physical chemistry background on fluidics in microdevices. Finally, a chapter on industrial applications and developments covers recent progress in process chemistry. An excellent reference for beginners and experts alike.
(source: Nielsen Book Data)
dx.doi.org Wiley Online Library
Book
xix, 465 p. : ill.
For the second edition of 'Microreactors in Organic Chemistry and Catalysis' all chapters have been revised and updated to reflect the latest developments in this rapidly developing field. This new edition has 60% more content, and it remains a comprehensive publication covering most aspects of the topic. The use of microreactors in homogeneous, heterogeneous as well as biphasic reactions is covered in the main part of the book, together with catalytic, bioorganic and automation approaches. The initial chapters also provide a solid physical chemistry background on fluidics in microdevices. Finally, a chapter on industrial applications and developments covers recent progress in process chemistry. An excellent reference for beginners and experts alike.
(source: Nielsen Book Data)
For the second edition of 'Microreactors in Organic Chemistry and Catalysis' all chapters have been revised and updated to reflect the latest developments in this rapidly developing field. This new edition has 60% more content, and it remains a comprehensive publication covering most aspects of the topic. The use of microreactors in homogeneous, heterogeneous as well as biphasic reactions is covered in the main part of the book, together with catalytic, bioorganic and automation approaches. The initial chapters also provide a solid physical chemistry background on fluidics in microdevices. Finally, a chapter on industrial applications and developments covers recent progress in process chemistry. An excellent reference for beginners and experts alike.
(source: Nielsen Book Data)
Book
1 online resource.
This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.
This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.
Book
xvi, 575 p. : ill.
  • Preface xi Overview xiii Part I. Introduction 1. History of Chemical Reactions 3 2. The Field of Chemistry 11 3. Process Variables 19 4. Kinetic Principles 45 5. Stoichiometry and Conversion Variables 73 Part II. Traditional Reactor Analysis 6. Reaction and Reactor Classification 111 7. The Conservation Laws 127 8. Batch Reactors 147 9. Continuous Stirred Tank Reactors (CSTRs)181 10. Tubular Flow Reactors 209 11. Reactor Comparisons 243 Part III. Reactor Applications 12. Thermal Effects 273 13. Interpretation of Kinetic Data 14. Non-Ideal Reactors 357 15. Reactor Design Considerations 383 Part IV. Other Reactor Topics 16. Catalysts 413 17. Catalytic Reactions 429 18. Fluidized and Fixed Bed Reactors 445 19. Biochemical Reactors 475 20. Open-Ended Problems 505 21. Abet-Related Topic 519 Appendix. SI Units.
  • (source: Nielsen Book Data)
This books format follows an applications-oriented text and serves as a training tool for individuals in education and industry involved directly, or indirectly, with chemical reactors. It addresses both technical and calculational problems in this field. While this text can be complimented with texts on chemical kinetics and/or reactor design, it also stands alone as a self-teaching aid. The first part serves as an introduction to the subject title and contains chapters dealing with history, process variables, basic operations, kinetic principles, and conversion variables. The second part of the book addresses traditional reactor analysis; chapter topics include batch, CSTRs, tubular flow reactors, plus a comparison of these classes of reactors. Part 3 keys on reactor applications that include non-ideal reactors: thermal effects, interpretation of kinetic data, and reactor design. The book concludes with other reactor topics; chapter titles include catalysis, catalytic reactors, other reactions and reactors, and ABET-related topics. An extensive Appendix is also included.
(source: Nielsen Book Data)
  • Preface xi Overview xiii Part I. Introduction 1. History of Chemical Reactions 3 2. The Field of Chemistry 11 3. Process Variables 19 4. Kinetic Principles 45 5. Stoichiometry and Conversion Variables 73 Part II. Traditional Reactor Analysis 6. Reaction and Reactor Classification 111 7. The Conservation Laws 127 8. Batch Reactors 147 9. Continuous Stirred Tank Reactors (CSTRs)181 10. Tubular Flow Reactors 209 11. Reactor Comparisons 243 Part III. Reactor Applications 12. Thermal Effects 273 13. Interpretation of Kinetic Data 14. Non-Ideal Reactors 357 15. Reactor Design Considerations 383 Part IV. Other Reactor Topics 16. Catalysts 413 17. Catalytic Reactions 429 18. Fluidized and Fixed Bed Reactors 445 19. Biochemical Reactors 475 20. Open-Ended Problems 505 21. Abet-Related Topic 519 Appendix. SI Units.
  • (source: Nielsen Book Data)
This books format follows an applications-oriented text and serves as a training tool for individuals in education and industry involved directly, or indirectly, with chemical reactors. It addresses both technical and calculational problems in this field. While this text can be complimented with texts on chemical kinetics and/or reactor design, it also stands alone as a self-teaching aid. The first part serves as an introduction to the subject title and contains chapters dealing with history, process variables, basic operations, kinetic principles, and conversion variables. The second part of the book addresses traditional reactor analysis; chapter topics include batch, CSTRs, tubular flow reactors, plus a comparison of these classes of reactors. Part 3 keys on reactor applications that include non-ideal reactors: thermal effects, interpretation of kinetic data, and reactor design. The book concludes with other reactor topics; chapter titles include catalysis, catalytic reactors, other reactions and reactors, and ABET-related topics. An extensive Appendix is also included.
(source: Nielsen Book Data)
Book
1 online resource (xvi, 572 p.) : ill.
  • Preface xi Overview xiii Part I. Introduction 1. History of Chemical Reactions 3 2. The Field of Chemistry 11 3. Process Variables 19 4. Kinetic Principles 45 5. Stoichiometry and Conversion Variables 73 Part II. Traditional Reactor Analysis 6. Reaction and Reactor Classification 111 7. The Conservation Laws 127 8. Batch Reactors 147 9. Continuous Stirred Tank Reactors (CSTRs)181 10. Tubular Flow Reactors 209 11. Reactor Comparisons 243 Part III. Reactor Applications 12. Thermal Effects 273 13. Interpretation of Kinetic Data 14. Non-Ideal Reactors 357 15. Reactor Design Considerations 383 Part IV. Other Reactor Topics 16. Catalysts 413 17. Catalytic Reactions 429 18. Fluidized and Fixed Bed Reactors 445 19. Biochemical Reactors 475 20. Open-Ended Problems 505 21. Abet-Related Topic 519 Appendix. SI Units.
  • (source: Nielsen Book Data)
This books format follows an applications-oriented text and serves as a training tool for individuals in education and industry involved directly, or indirectly, with chemical reactors. It addresses both technical and calculational problems in this field. While this text can be complimented with texts on chemical kinetics and/or reactor design, it also stands alone as a self-teaching aid. The first part serves as an introduction to the subject title and contains chapters dealing with history, process variables, basic operations, kinetic principles, and conversion variables. The second part of the book addresses traditional reactor analysis; chapter topics include batch, CSTRs, tubular flow reactors, plus a comparison of these classes of reactors. Part 3 keys on reactor applications that include non-ideal reactors: thermal effects, interpretation of kinetic data, and reactor design. The book concludes with other reactor topics; chapter titles include catalysis, catalytic reactors, other reactions and reactors, and ABET-related topics. An extensive Appendix is also included.
(source: Nielsen Book Data)
  • Preface xi Overview xiii Part I. Introduction 1. History of Chemical Reactions 3 2. The Field of Chemistry 11 3. Process Variables 19 4. Kinetic Principles 45 5. Stoichiometry and Conversion Variables 73 Part II. Traditional Reactor Analysis 6. Reaction and Reactor Classification 111 7. The Conservation Laws 127 8. Batch Reactors 147 9. Continuous Stirred Tank Reactors (CSTRs)181 10. Tubular Flow Reactors 209 11. Reactor Comparisons 243 Part III. Reactor Applications 12. Thermal Effects 273 13. Interpretation of Kinetic Data 14. Non-Ideal Reactors 357 15. Reactor Design Considerations 383 Part IV. Other Reactor Topics 16. Catalysts 413 17. Catalytic Reactions 429 18. Fluidized and Fixed Bed Reactors 445 19. Biochemical Reactors 475 20. Open-Ended Problems 505 21. Abet-Related Topic 519 Appendix. SI Units.
  • (source: Nielsen Book Data)
This books format follows an applications-oriented text and serves as a training tool for individuals in education and industry involved directly, or indirectly, with chemical reactors. It addresses both technical and calculational problems in this field. While this text can be complimented with texts on chemical kinetics and/or reactor design, it also stands alone as a self-teaching aid. The first part serves as an introduction to the subject title and contains chapters dealing with history, process variables, basic operations, kinetic principles, and conversion variables. The second part of the book addresses traditional reactor analysis; chapter topics include batch, CSTRs, tubular flow reactors, plus a comparison of these classes of reactors. Part 3 keys on reactor applications that include non-ideal reactors: thermal effects, interpretation of kinetic data, and reactor design. The book concludes with other reactor topics; chapter titles include catalysis, catalytic reactors, other reactions and reactors, and ABET-related topics. An extensive Appendix is also included.
(source: Nielsen Book Data)
dx.doi.org Wiley Online Library
Book
PDFN
This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.
This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.
Book
xxxi, 532 pages : illustrations ; 26 cm
  • Introduction Process Development Basic Building Blocks of Chemical Reaction Engineering Outline of the Book Introduction to Chemical Reactions Classification and Types of Reactors Reactor Performance Measures Introduction to Rate Function Transport Phenomena in Reactors Numerical Methods References The Thermodynamics of Chemical Reactions Basic Definitions Energy Changes in Systems Chemical Reaction Equilibrium Summary Problems References Mole Balances in Ideal Reactors General Mole Balance Equation Perfectly Mixed Batch Reactor Plug Flow Reactor Continuous Stirred Tank Reactor Reaction Rate in Terms of Catalyst Mass Comparison of PFR and CSTR Performance Multiple Reactions Multiple-Reactor Systems Further Thoughts on Defining Conversion Transient Reactor Operation Summary Problems Energy Balances in Ideal Reactors Influence of Temperature on Reactor Operation General Energy Balance Batch Reactor Plug Flow Reactor Continuous Stirred Tank Reactor Summary Problems References Chemical Kinetics for Homogeneous Reactions General Nature of Rate Functions Reaction Mechanism Theoretical Analysis of Reaction Rate Rate Equations for Nonelementary Reactions Mechanisms and Models Experimental Methods in Rate Data Collection and Analysis Summary Problems Nonideal Reactor Analysis Causes of Nonideal Reactor Behavior Residence Time and Mixing RTD Function RTD in Ideal Reactors Modeling RTD Mixing in Chemical Reactors Summary Problems References Introduction to Catalysis Origins of Catalysis: Historical Perspectives Definitions and Fundamental Concepts Thermodynamics Catalyst Types and Basic Structure Classification of Vapor-Phase Reactions Basic Steps in Heterogeneous Catalytic Reactions Introduction to Catalytic Reactors Summary Kinetics of Catalytic Reactions Adsorption Rate Expressions for Catalytic Reactions Mechanisms and Models Summary Problems Reference Transport Processes in Catalysis Diffusion in Bulk Phase External Mass and Heat Transfer Effects Diffusion in Porous Catalysts Diffusion with Reaction in Porous Catalysts Summary Problems References Analysis of Catalytic Reactors Packed-Bed Reactor: Introduction and Overview Conservation Equations for Packed Beds One-Dimensional Steady-State Plug Flow Models One-Dimensional Steady-State Axial Dispersion Models Two-Dimensional Steady-State Models Transient Packed-Bed Models Transport Properties in Packed Beds Autothermal Operation of Packed Beds Fluidized-Bed Reactors Metal Gauze Reactors Counter Diffusive Reactor: Radiant Heaters Monolith Reactors Reactors for Gas-Liquid-Solid Systems Summary Problems References Experimental Methods in Catalysis Kinetic Investigations Measuring Physical Properties Electron Microscopy Surface Science Studies Summary Problems References Appendix 1: Numerical Methods Nonlinear Algebraic Equations Linear Algebraic Equations Ordinary Differential Equations Numerical Integration Numerical Differentiation Partial Differential Equations Appendix 2: Thermodynamic Data Appendix 3: Useful Integrals Appendix 4: Numerical Software POLYMATH MATLAB(R) COMSOL Multiphysics Index.
  • (source: Nielsen Book Data)
Introduction to Chemical Reactor Analysis, Second Edition introduces the basic concepts of chemical reactor analysis and design, an important foundation for understanding chemical reactors, which play a central role in most industrial chemical plants. The scope of the second edition has been significantly enhanced and the content reorganized for improved pedagogical value, containing sufficient material to be used as a text for an undergraduate level two-term course. This edition also contains five new chapters on catalytic reaction engineering. Written so that newcomers to the field can easily progress through the topics, this text provides sufficient knowledge for readers to perform most of the common reaction engineering calculations required for a typical practicing engineer. The authors introduce kinetics, reactor types, and commonly used terms in the first chapter. Subsequent chapters cover a review of chemical engineering thermodynamics, mole balances in ideal reactors for three common reactor types, energy balances in ideal reactors, and chemical reaction kinetics. The text also presents an introduction to nonideal reactors, and explores kinetics and reactors in catalytic systems. The book assumes that readers have some knowledge of thermodynamics, numerical methods, heat transfer, and fluid flow. The authors include an appendix for numerical methods, which are essential to solving most realistic problems in chemical reaction engineering. They also provide numerous worked examples and additional problems in each chapter. Given the significant number of chemical engineers involved in chemical process plant operation at some point in their careers, this book offers essential training for interpreting chemical reactor performance and improving reactor operation. What's New in This Edition: * Five new chapters on catalytic reaction engineering, including various catalytic reactions and kinetics, transport processes, and experimental methods * Expanded coverage of adsorption * Additional worked problems * Reorganized material.
(source: Nielsen Book Data)
  • Introduction Process Development Basic Building Blocks of Chemical Reaction Engineering Outline of the Book Introduction to Chemical Reactions Classification and Types of Reactors Reactor Performance Measures Introduction to Rate Function Transport Phenomena in Reactors Numerical Methods References The Thermodynamics of Chemical Reactions Basic Definitions Energy Changes in Systems Chemical Reaction Equilibrium Summary Problems References Mole Balances in Ideal Reactors General Mole Balance Equation Perfectly Mixed Batch Reactor Plug Flow Reactor Continuous Stirred Tank Reactor Reaction Rate in Terms of Catalyst Mass Comparison of PFR and CSTR Performance Multiple Reactions Multiple-Reactor Systems Further Thoughts on Defining Conversion Transient Reactor Operation Summary Problems Energy Balances in Ideal Reactors Influence of Temperature on Reactor Operation General Energy Balance Batch Reactor Plug Flow Reactor Continuous Stirred Tank Reactor Summary Problems References Chemical Kinetics for Homogeneous Reactions General Nature of Rate Functions Reaction Mechanism Theoretical Analysis of Reaction Rate Rate Equations for Nonelementary Reactions Mechanisms and Models Experimental Methods in Rate Data Collection and Analysis Summary Problems Nonideal Reactor Analysis Causes of Nonideal Reactor Behavior Residence Time and Mixing RTD Function RTD in Ideal Reactors Modeling RTD Mixing in Chemical Reactors Summary Problems References Introduction to Catalysis Origins of Catalysis: Historical Perspectives Definitions and Fundamental Concepts Thermodynamics Catalyst Types and Basic Structure Classification of Vapor-Phase Reactions Basic Steps in Heterogeneous Catalytic Reactions Introduction to Catalytic Reactors Summary Kinetics of Catalytic Reactions Adsorption Rate Expressions for Catalytic Reactions Mechanisms and Models Summary Problems Reference Transport Processes in Catalysis Diffusion in Bulk Phase External Mass and Heat Transfer Effects Diffusion in Porous Catalysts Diffusion with Reaction in Porous Catalysts Summary Problems References Analysis of Catalytic Reactors Packed-Bed Reactor: Introduction and Overview Conservation Equations for Packed Beds One-Dimensional Steady-State Plug Flow Models One-Dimensional Steady-State Axial Dispersion Models Two-Dimensional Steady-State Models Transient Packed-Bed Models Transport Properties in Packed Beds Autothermal Operation of Packed Beds Fluidized-Bed Reactors Metal Gauze Reactors Counter Diffusive Reactor: Radiant Heaters Monolith Reactors Reactors for Gas-Liquid-Solid Systems Summary Problems References Experimental Methods in Catalysis Kinetic Investigations Measuring Physical Properties Electron Microscopy Surface Science Studies Summary Problems References Appendix 1: Numerical Methods Nonlinear Algebraic Equations Linear Algebraic Equations Ordinary Differential Equations Numerical Integration Numerical Differentiation Partial Differential Equations Appendix 2: Thermodynamic Data Appendix 3: Useful Integrals Appendix 4: Numerical Software POLYMATH MATLAB(R) COMSOL Multiphysics Index.
  • (source: Nielsen Book Data)
Introduction to Chemical Reactor Analysis, Second Edition introduces the basic concepts of chemical reactor analysis and design, an important foundation for understanding chemical reactors, which play a central role in most industrial chemical plants. The scope of the second edition has been significantly enhanced and the content reorganized for improved pedagogical value, containing sufficient material to be used as a text for an undergraduate level two-term course. This edition also contains five new chapters on catalytic reaction engineering. Written so that newcomers to the field can easily progress through the topics, this text provides sufficient knowledge for readers to perform most of the common reaction engineering calculations required for a typical practicing engineer. The authors introduce kinetics, reactor types, and commonly used terms in the first chapter. Subsequent chapters cover a review of chemical engineering thermodynamics, mole balances in ideal reactors for three common reactor types, energy balances in ideal reactors, and chemical reaction kinetics. The text also presents an introduction to nonideal reactors, and explores kinetics and reactors in catalytic systems. The book assumes that readers have some knowledge of thermodynamics, numerical methods, heat transfer, and fluid flow. The authors include an appendix for numerical methods, which are essential to solving most realistic problems in chemical reaction engineering. They also provide numerous worked examples and additional problems in each chapter. Given the significant number of chemical engineers involved in chemical process plant operation at some point in their careers, this book offers essential training for interpreting chemical reactor performance and improving reactor operation. What's New in This Edition: * Five new chapters on catalytic reaction engineering, including various catalytic reactions and kinetics, transport processes, and experimental methods * Expanded coverage of adsorption * Additional worked problems * Reorganized material.
(source: Nielsen Book Data)
Chemistry & ChemEng Library (Swain)
Status of items at Chemistry & ChemEng Library (Swain)
Chemistry & ChemEng Library (Swain) Status
Stacks
TP157 .H35 2013 Unknown
Book
1 online resource (608 p.)
This comprehensive review, prepared by 24 experts, many of whom are pioneers of the subject, brings together in one place over 40 years of research in this unique publication. This book will assist R & D specialists, research chemists, chemical engineers or process managers harnessing periodic operations to improve their process plant performance. "Periodic Operation of Reactors" covers process fundamentals, research equipment and methods and provides "the state of the art" for the periodic operation of many industrially important catalytic reactions. Emphasis is on experimental results, modeling and simulation. Combined reaction and separation are dealt with, including simulated moving bed chromatographic, pressure and temperature swing and circulating bed reactors. Thus, "Periodic Operation of Reactors" offers readers a single comprehensive source for the broad and diverse new subject. This exciting new publication is a "must have" for any professional working in chemical process research and development. Key features: provides the only comprehensive reference on the fundamentals, development and applications of periodic reactor operation, using contributions from the research pioneers. This authoritative reference focuses on applications helping readers to use this book to deliver results in their own work. Complete literature references will be an invaluable assistance for readers collecting data and models from past research. About the editors: Peter L. Silveston is a Distinguished Professor Emeritus at the University of Waterloo in Canada. Professor Silveston has authored or co-authored three previous books on reactor engineering topics as well as close to 300 research publications. He is a graduate of M.I.T. and the Technical University of Munich (Germany). Robert Hudgins is a Professor Emeritus at the University of Waterloo. His research interests are reactor engineering, specifically periodic operation of catalytic reactors, and he has about 250 research publications. He is a graduate of the University of Toronto and Princeton University. Feature: a comprehensive reference on the fundamentals, development and applications of periodic operation. Benefit: provides readers with a single comprehensive source for this extremely broad and diverse subject. Feature: contributors and editors include the pioneers of the subject as well as the leading researchers in the field. Benefit: has the authority and experience of the leading players in the field. Feature: covers both fundamentals and the state of the art for each operation scenario, and brings all types of periodic operation together in a single volume. Benefit: provides a succinct reference to the most important applications in the filed, allowing readers to understand how to apply techniques or technologies to their own situation. Feature: discussion is focused on experimental results rather than theoretical ones; provides a rich source of experimental data, plus process models. Benefit: applied approach that is geared helping practicing engineers and researchers solve problems. Feature: accompanying website with modelling data. Benefit: engineers can engage with experimental and actual performance data.
(source: Nielsen Book Data)
This comprehensive review, prepared by 24 experts, many of whom are pioneers of the subject, brings together in one place over 40 years of research in this unique publication. This book will assist R & D specialists, research chemists, chemical engineers or process managers harnessing periodic operations to improve their process plant performance. "Periodic Operation of Reactors" covers process fundamentals, research equipment and methods and provides "the state of the art" for the periodic operation of many industrially important catalytic reactions. Emphasis is on experimental results, modeling and simulation. Combined reaction and separation are dealt with, including simulated moving bed chromatographic, pressure and temperature swing and circulating bed reactors. Thus, "Periodic Operation of Reactors" offers readers a single comprehensive source for the broad and diverse new subject. This exciting new publication is a "must have" for any professional working in chemical process research and development. Key features: provides the only comprehensive reference on the fundamentals, development and applications of periodic reactor operation, using contributions from the research pioneers. This authoritative reference focuses on applications helping readers to use this book to deliver results in their own work. Complete literature references will be an invaluable assistance for readers collecting data and models from past research. About the editors: Peter L. Silveston is a Distinguished Professor Emeritus at the University of Waterloo in Canada. Professor Silveston has authored or co-authored three previous books on reactor engineering topics as well as close to 300 research publications. He is a graduate of M.I.T. and the Technical University of Munich (Germany). Robert Hudgins is a Professor Emeritus at the University of Waterloo. His research interests are reactor engineering, specifically periodic operation of catalytic reactors, and he has about 250 research publications. He is a graduate of the University of Toronto and Princeton University. Feature: a comprehensive reference on the fundamentals, development and applications of periodic operation. Benefit: provides readers with a single comprehensive source for this extremely broad and diverse subject. Feature: contributors and editors include the pioneers of the subject as well as the leading researchers in the field. Benefit: has the authority and experience of the leading players in the field. Feature: covers both fundamentals and the state of the art for each operation scenario, and brings all types of periodic operation together in a single volume. Benefit: provides a succinct reference to the most important applications in the filed, allowing readers to understand how to apply techniques or technologies to their own situation. Feature: discussion is focused on experimental results rather than theoretical ones; provides a rich source of experimental data, plus process models. Benefit: applied approach that is geared helping practicing engineers and researchers solve problems. Feature: accompanying website with modelling data. Benefit: engineers can engage with experimental and actual performance data.
(source: Nielsen Book Data)
Book
1 online resource (608 pages)
  • Machine generated contents note: 1. Introduction / Yurii Sh. Matros
  • 1.1. Periodic Operation
  • 1.2. Origins of Periodic Operation
  • 1.3. Variables in Periodic Operation
  • 1.4. Cycle Structure in Periodic Operation
  • 1.5. Measuring Improvement
  • 1.6. Inherently Periodic Processes
  • 1.7. Objectives of Periodic Operation
  • 1.8. Strategies in Periodic Operation
  • 1.9. Equipment for Periodic Operation
  • 1.10. Reaction Systems Examined
  • 1.11. New Directions
  • 1.12.A Brief History of the Study of Periodic Operation
  • 2. Hydrogenation Processes / Peter Lewis Silveston
  • 2.1. Ammonia Synthesis
  • 2.2. NOx Reduction
  • 2.3. Methanation
  • 2.4. Methanol Synthesis
  • 2.5. Ethylene Hydrogenation
  • 2.6. Aromatics Hydrogenation
  • 2.7. Oscillatory Behavior
  • 3. Catalytic Oxidation and Reduction of Gases / Albert Renken
  • 3.1. Introduction
  • 3.2. CO Oxidation
  • 3.3. Sulfur Dioxide Oxidation
  • 3.4. Reduction of SO3 by CO Over Platinum
  • 3.5. Reduction of Nitrogen Oxides
  • 3.6. Traveling Waves in Packed Beds
  • 4. Partial Oxidation and Dehydrogenation of Hydrocarbons / Adesoji A. Adesina
  • 4.1. Introduction
  • 4.2. Partial Oxidation and Reforming of Methane to Syngas
  • 4.3. Oxidative Coupling of Methane
  • 4.4. Epoxidation
  • 4.5. Propene and Butene Partial Oxidation and Ammoxidation
  • 4.6. Catalytic Dehydrogenation of Propane, Butane and Higher Hydrocarbons
  • 4.7. Maleic Anhydride from Butane
  • 4.8. Anhydrides and Aldehydes from Aromatic Hydrocarbons
  • 4.9. Aromatic Nitriles
  • 5.Combustion Systems / Robert Ross Hudgins
  • 5.1. Non-Catalytic Combustion Reactions
  • 5.2. Catalytic Combustion
  • 5.3. Looping Combustion
  • 5.4. Simulated Loop Reactors
  • 6. Automotive Exhaust Catalysis / William S. Epling
  • 6.1. Internal Combustion Engines
  • 6.2. Modulation of Detoxification Reactions
  • 6.3. Modeling Studies
  • 6.4. Studies on Modulating Automotive Exhaust
  • 6.5. Effect of A/F Modulation on Poisoning and Sintering
  • 6.6. Effects of Irregular A/F Variation
  • 6.7. Lean Burn Spark-Ignited Engines
  • 6.8. Application of NSR to Diesel Exhausts
  • 6.9. Does A/F Modulation Improve Converter Performance?
  • 7. Polymerization Under Modulation / Peter L. Silveston
  • 7.1. Introduction
  • 7.2. Simulation of Polymerization Under Input Modulation
  • 7.3. Experiments on Polymerization Under Input Modulation
  • 7.4. Spontaneous Oscillations
  • 7.5. Saturation of Polymers
  • 7.6. Assessment
  • 8. Catalytic Gas-Solid Reactions / Peter Lewis Silveston
  • 8.1. Partial Oxidation and Oxidative Dehydrogenation of Hydrocarbons
  • 8.2. Methane Cracking
  • 8.3. Non-Catalytic Gas-Solid Reactions
  • 8.4. Catalytic Gasification Under Modulation
  • 8.5. Gasification Employing a Circulating Solid Oxygen Carrier
  • 8.6.Combustion in Circulating Fluidized Beds
  • 8.7. Periodic Reaction Switching
  • 9. Electrochemical Processes / Peter Lewis Silveston
  • 9.1. Introduction
  • 9.2. Electroplating
  • 9.3. Electroforming
  • 9.4. Anodization
  • 9.5. Electrochemical Machining and Polishing
  • 9.6. Electrowinning and Electrorefining
  • 9.7. Galvanic Cells
  • 9.8. Electrolytic Production of Chemicals
  • 9.9. Applicability of Principles or Practices to Non-Electrochemical Reactions
  • 10. Modulation of Biological Processes / Jeno M. Scharer
  • 10.1. Introduction
  • 10.2. Theoretical Considerations
  • 10.3. Substrate and Flow Rate Modulation
  • 10.4. Dissolved Oxygen Modulation
  • 10.5. Culture Medium Tuning
  • 10.6. Survival in Mixed Cultures
  • 10.7. Stabilization of Recombinant Cell Cultures
  • 10.8. Applications to Immobilized Cells or Enzymes
  • 10.9. Fed-Batch Operations
  • 10.10. Overview
  • 11. Miscellaneous Reactions / Albert Renken
  • 11.1. Ethyl Acetate from Ethylene and Acetic Acid
  • 11.2. Claus Reaction
  • 11.3. Dehydrogenation of Methanol
  • 11.4. Deamination and Alcohol Dehydration Reactions
  • 11.5. Photocatalytic Degradation of AZO Dyes
  • 11.6. The Minimal Bromate Reaction
  • 11.7. Propanol Dehydrogenation
  • 11.8. Glucose Oxidation
  • 11.9. Overview
  • 12. Modulation of Multiple Reactions / Albert Renken
  • 12.1. Introduction
  • 12.2. Homogeneous Reactions
  • 12.3. Solids Catalyzed Reactions
  • 12.4.Competitive Reactions
  • 12.5. Methane Homologation
  • 12.6. Oligomerization of Ethene
  • 12.7. Modulation of Multiple Inputs
  • 13. Use of Modulation in Mechanistic Studies / Peter Lewis Silveston
  • 13.1. Introduction
  • 13.2. Qualitative Applications
  • 13.3. Quantitative Applications
  • 13.4. Modulation of Light Intensity
  • 13.5. Application of Modulation to the Testing of Rival Models
  • 13.6. Overview
  • 14. Evaluation of Periodic Processes / Andreas Seidel-Morgenstern
  • 14.1. Introduction
  • 14.2. Nonlinear Frequency Response and Higher Order Frequency Response Functions
  • 14.3. Estimation of the Time Average Performance of Periodic Processes Using Nonlinear Frequency Response Analysis
  • 14.4. Application of Nonlinear Frequency Response Analysis for the Estimation of the Periodic Steady States of Cyclic Processes
  • 14.5. Summary
  • 15. Pressure Modulation / Robert Ross Hudgins
  • 15.1. Introduction
  • 15.2. Acceleration of Mass Transfer
  • 15.3. Sonocatalysis
  • 15.4. Periodic Pressure Reduction
  • 15.5.Combined Compression and Reaction
  • 15.6. Application to Rate and Equilibrium Measurements
  • 15.7. Assessment and Research Opportunities
  • 16. Temperature Modulation / Robert Ross Hudgins
  • 16.1. Introduction
  • 16.2. Theoretical Studies
  • 16.3. Simulation Studies
  • 16.4. Experimental Studies with Conventional Laboratory Equipment
  • 16.5. Temperature Modulation of Trickle Beds
  • 16.6. Experimental Studies with Microreactors
  • 16.7. Overview and Comments
  • 17. Flow Interruption in Trickle Beds / Peter Lewis Silveston
  • 17.1. Introduction
  • 17.2. Steady-State Operation of a Trickle Bed Reactor
  • 17.3. Periodic Operation of Trickle Bed Reactors
  • 17.4. Liquid Flow Modulation with Multiple Reactions
  • 17.5. Hydrodynamics Under Liquid Flow Modulation
  • 17.6. Modeling of the Periodic Operation of Trickle Bed Reactors
  • 17.7. Summary
  • 18. Periodic Flow Reversal / Hristo Sapoundjiev
  • 18.1. The Heat-Trapping Concept
  • 18.2. Theoretical Aspects
  • 18.3. Oxidation of Volatile Organic Compounds
  • 18.4. Other Applications of Reverse Flow Reactors
  • 18.5. Thermal Reactors
  • 18.6. Endothermic Processes
  • 18.7. Mass Trapping Reactors
  • 18.8. Biofilters
  • 18.9. Miscellaneous Applications
  • 18.10.Commercial Applications
  • 19. Control of Periodically Operated Reactors / Peter Lewis Silveston
  • 19.1. Formulation of an Optimal Control Problem for a Periodically Operated Reactor
  • 19.2. Chattering Controls
  • 19.3. Controls for Stirred Slurry and Fluidized Bed Reactors
  • 19.4. Controls for Packed Bed Reactors
  • 19.5. Control of Packed Bed Reactors with Flow-Direction Switching
  • 19.6. Control of Simulated Moving Bed Chromatographic Reactors
  • 19.7. Other Control Schemes for Periodically Operated Reactors
  • 19.8.Comments and Research Needs
  • 20. Chromatographic Reactors / Motoaki Kawase
  • 20.1. Introduction
  • 20.2. Concept and Types
  • 20.3. General Models
  • 20.4. Cyclic Steady State
  • 20.5. Pulse Chromatographic Reactor
  • 20.6. Countercurrent Moving Bed Chromatographic Reactor
  • 20.7. Continuous Rotating Annular Chromatographic Reactor
  • 20.8. Stepwise, Countercurrent Multi-Stage Fluidized Bed Chromatographic Reactor
  • 20.9. Fixed Bed Chromatographic Reactor With Flow Direction Switching
  • 20.10. Extractive Reactor Systems
  • 20.11. Centrifugal Partition Chromatographic Reactor
  • 21. Simulated Moving Bed Chromatographic Reactors / Peter Lewis Silveston
  • 21.1. Operation and Application
  • 21.2. Modeling and Simulation
  • 21.3. Experimental Studies
  • 21.4. Other Reactor Applications of Simulated Moving Beds
  • 22. Pressure and Temperature Swing Reactors / Peter Lewis Silveston
  • 22.1. Concepts and Types of Pressure Swing Reactors
  • 22.2. Models for Swing Reactors
  • 22.3.Computational Considerations
  • 22.4. Simulations of Pressure Swing Systems
  • 22.5. Experimental Studies
  • 22.6. Temperature Swing Reactors
  • 22.7. Simulation of Temperature Swing Systems
  • 22.8. Temperature Swing Reactor Networks
  • 22.9. Experimental
  • 22.10.Combined Pressure and Temperature Swing Reactors
  • 22.11. Overview and Assessment
  • 23. New Directions
  • Research and Development Challenges / Peter Lewis Silveston
  • 23.1. Challenges
  • 23.2. New Directions.
This comprehensive review, prepared by 24 experts, many of whom are pioneers of the subject, brings together in one place over 40 years of research in this unique publication. This book will assist R & D specialists, research chemists, chemical engineers or process managers harnessing periodic operations to improve their process plant performance. Periodic Operation of Reactors covers process fundamentals, research equipment and methods and provides "the state of the art" for the periodic operation of many industrially important catalytic reactions. Emphasis is on experimental results, modeling and simulation. Combined reaction and separation are dealt with, including simulated moving bed chromatographic, pressure and temperature swing and circulating bed reactors. Thus, Periodic Operation of Reactors offers readers a single comprehensive source for the broad and diverse new subject. This exciting new publication is a "must have" for any professional working in chemical process research and development. Key features: Provides the only comprehensive reference on the fundamentals, development and applications of periodic reactor operation, using contributions from the research pioneers. This authoritative reference focuses on applications helping readers to use this book to deliver results in their own work. Complete literature references will be an invaluable assistance for readers collecting data and models from past research. About the editors: Peter L. Silveston is a Distinguished Professor Emeritus at the University of Waterloo in Canada. Professor Silveston has authored or co-authored three previous books on reactor engineering topics as well as close to 300 research publications. He is a graduate of M.I.T. and the Technical University of Munich (Germany). Robert Hudgins is a Professor Emeritus at the University of Waterloo. His research interests are reactor engineering, specifically periodic operation of catalytic reactors, and he has about 250 research publications. He is a graduate of the University of Toronto and Princeton University. FEATURE: A comprehensive reference on the fundamentals, development and applications of periodic operation. BENEFIT: Provides readers with a single comprehensive source for this extremely broad and diverse subject FEATURE: Contributors and editors include the pioneers of the subject as well as the leading researchers in the field. BENEFIT: Has the authority and experience of the leading players in the field FEATURE: Covers both fundamentals and the state of the art for each operation scenario, and brings all types of periodic operation together in a single volume. BENEFIT: Provides a succinct reference to the most important applications in the filed, allowing readers to understand how to apply techniques or technologies to their own situation FEATURE: Discussion is focused on experimental results rather than theoretical ones; provides a rich source of experimental data, plus process models. BENEFIT: Applied approach that is geared helping practicing engineers and researchers solve problems FEATURE: Accompanying website with modelling data BENEFIT: Engineers can engage with experimental and actual performance data.
  • Machine generated contents note: 1. Introduction / Yurii Sh. Matros
  • 1.1. Periodic Operation
  • 1.2. Origins of Periodic Operation
  • 1.3. Variables in Periodic Operation
  • 1.4. Cycle Structure in Periodic Operation
  • 1.5. Measuring Improvement
  • 1.6. Inherently Periodic Processes
  • 1.7. Objectives of Periodic Operation
  • 1.8. Strategies in Periodic Operation
  • 1.9. Equipment for Periodic Operation
  • 1.10. Reaction Systems Examined
  • 1.11. New Directions
  • 1.12.A Brief History of the Study of Periodic Operation
  • 2. Hydrogenation Processes / Peter Lewis Silveston
  • 2.1. Ammonia Synthesis
  • 2.2. NOx Reduction
  • 2.3. Methanation
  • 2.4. Methanol Synthesis
  • 2.5. Ethylene Hydrogenation
  • 2.6. Aromatics Hydrogenation
  • 2.7. Oscillatory Behavior
  • 3. Catalytic Oxidation and Reduction of Gases / Albert Renken
  • 3.1. Introduction
  • 3.2. CO Oxidation
  • 3.3. Sulfur Dioxide Oxidation
  • 3.4. Reduction of SO3 by CO Over Platinum
  • 3.5. Reduction of Nitrogen Oxides
  • 3.6. Traveling Waves in Packed Beds
  • 4. Partial Oxidation and Dehydrogenation of Hydrocarbons / Adesoji A. Adesina
  • 4.1. Introduction
  • 4.2. Partial Oxidation and Reforming of Methane to Syngas
  • 4.3. Oxidative Coupling of Methane
  • 4.4. Epoxidation
  • 4.5. Propene and Butene Partial Oxidation and Ammoxidation
  • 4.6. Catalytic Dehydrogenation of Propane, Butane and Higher Hydrocarbons
  • 4.7. Maleic Anhydride from Butane
  • 4.8. Anhydrides and Aldehydes from Aromatic Hydrocarbons
  • 4.9. Aromatic Nitriles
  • 5.Combustion Systems / Robert Ross Hudgins
  • 5.1. Non-Catalytic Combustion Reactions
  • 5.2. Catalytic Combustion
  • 5.3. Looping Combustion
  • 5.4. Simulated Loop Reactors
  • 6. Automotive Exhaust Catalysis / William S. Epling
  • 6.1. Internal Combustion Engines
  • 6.2. Modulation of Detoxification Reactions
  • 6.3. Modeling Studies
  • 6.4. Studies on Modulating Automotive Exhaust
  • 6.5. Effect of A/F Modulation on Poisoning and Sintering
  • 6.6. Effects of Irregular A/F Variation
  • 6.7. Lean Burn Spark-Ignited Engines
  • 6.8. Application of NSR to Diesel Exhausts
  • 6.9. Does A/F Modulation Improve Converter Performance?
  • 7. Polymerization Under Modulation / Peter L. Silveston
  • 7.1. Introduction
  • 7.2. Simulation of Polymerization Under Input Modulation
  • 7.3. Experiments on Polymerization Under Input Modulation
  • 7.4. Spontaneous Oscillations
  • 7.5. Saturation of Polymers
  • 7.6. Assessment
  • 8. Catalytic Gas-Solid Reactions / Peter Lewis Silveston
  • 8.1. Partial Oxidation and Oxidative Dehydrogenation of Hydrocarbons
  • 8.2. Methane Cracking
  • 8.3. Non-Catalytic Gas-Solid Reactions
  • 8.4. Catalytic Gasification Under Modulation
  • 8.5. Gasification Employing a Circulating Solid Oxygen Carrier
  • 8.6.Combustion in Circulating Fluidized Beds
  • 8.7. Periodic Reaction Switching
  • 9. Electrochemical Processes / Peter Lewis Silveston
  • 9.1. Introduction
  • 9.2. Electroplating
  • 9.3. Electroforming
  • 9.4. Anodization
  • 9.5. Electrochemical Machining and Polishing
  • 9.6. Electrowinning and Electrorefining
  • 9.7. Galvanic Cells
  • 9.8. Electrolytic Production of Chemicals
  • 9.9. Applicability of Principles or Practices to Non-Electrochemical Reactions
  • 10. Modulation of Biological Processes / Jeno M. Scharer
  • 10.1. Introduction
  • 10.2. Theoretical Considerations
  • 10.3. Substrate and Flow Rate Modulation
  • 10.4. Dissolved Oxygen Modulation
  • 10.5. Culture Medium Tuning
  • 10.6. Survival in Mixed Cultures
  • 10.7. Stabilization of Recombinant Cell Cultures
  • 10.8. Applications to Immobilized Cells or Enzymes
  • 10.9. Fed-Batch Operations
  • 10.10. Overview
  • 11. Miscellaneous Reactions / Albert Renken
  • 11.1. Ethyl Acetate from Ethylene and Acetic Acid
  • 11.2. Claus Reaction
  • 11.3. Dehydrogenation of Methanol
  • 11.4. Deamination and Alcohol Dehydration Reactions
  • 11.5. Photocatalytic Degradation of AZO Dyes
  • 11.6. The Minimal Bromate Reaction
  • 11.7. Propanol Dehydrogenation
  • 11.8. Glucose Oxidation
  • 11.9. Overview
  • 12. Modulation of Multiple Reactions / Albert Renken
  • 12.1. Introduction
  • 12.2. Homogeneous Reactions
  • 12.3. Solids Catalyzed Reactions
  • 12.4.Competitive Reactions
  • 12.5. Methane Homologation
  • 12.6. Oligomerization of Ethene
  • 12.7. Modulation of Multiple Inputs
  • 13. Use of Modulation in Mechanistic Studies / Peter Lewis Silveston
  • 13.1. Introduction
  • 13.2. Qualitative Applications
  • 13.3. Quantitative Applications
  • 13.4. Modulation of Light Intensity
  • 13.5. Application of Modulation to the Testing of Rival Models
  • 13.6. Overview
  • 14. Evaluation of Periodic Processes / Andreas Seidel-Morgenstern
  • 14.1. Introduction
  • 14.2. Nonlinear Frequency Response and Higher Order Frequency Response Functions
  • 14.3. Estimation of the Time Average Performance of Periodic Processes Using Nonlinear Frequency Response Analysis
  • 14.4. Application of Nonlinear Frequency Response Analysis for the Estimation of the Periodic Steady States of Cyclic Processes
  • 14.5. Summary
  • 15. Pressure Modulation / Robert Ross Hudgins
  • 15.1. Introduction
  • 15.2. Acceleration of Mass Transfer
  • 15.3. Sonocatalysis
  • 15.4. Periodic Pressure Reduction
  • 15.5.Combined Compression and Reaction
  • 15.6. Application to Rate and Equilibrium Measurements
  • 15.7. Assessment and Research Opportunities
  • 16. Temperature Modulation / Robert Ross Hudgins
  • 16.1. Introduction
  • 16.2. Theoretical Studies
  • 16.3. Simulation Studies
  • 16.4. Experimental Studies with Conventional Laboratory Equipment
  • 16.5. Temperature Modulation of Trickle Beds
  • 16.6. Experimental Studies with Microreactors
  • 16.7. Overview and Comments
  • 17. Flow Interruption in Trickle Beds / Peter Lewis Silveston
  • 17.1. Introduction
  • 17.2. Steady-State Operation of a Trickle Bed Reactor
  • 17.3. Periodic Operation of Trickle Bed Reactors
  • 17.4. Liquid Flow Modulation with Multiple Reactions
  • 17.5. Hydrodynamics Under Liquid Flow Modulation
  • 17.6. Modeling of the Periodic Operation of Trickle Bed Reactors
  • 17.7. Summary
  • 18. Periodic Flow Reversal / Hristo Sapoundjiev
  • 18.1. The Heat-Trapping Concept
  • 18.2. Theoretical Aspects
  • 18.3. Oxidation of Volatile Organic Compounds
  • 18.4. Other Applications of Reverse Flow Reactors
  • 18.5. Thermal Reactors
  • 18.6. Endothermic Processes
  • 18.7. Mass Trapping Reactors
  • 18.8. Biofilters
  • 18.9. Miscellaneous Applications
  • 18.10.Commercial Applications
  • 19. Control of Periodically Operated Reactors / Peter Lewis Silveston
  • 19.1. Formulation of an Optimal Control Problem for a Periodically Operated Reactor
  • 19.2. Chattering Controls
  • 19.3. Controls for Stirred Slurry and Fluidized Bed Reactors
  • 19.4. Controls for Packed Bed Reactors
  • 19.5. Control of Packed Bed Reactors with Flow-Direction Switching
  • 19.6. Control of Simulated Moving Bed Chromatographic Reactors
  • 19.7. Other Control Schemes for Periodically Operated Reactors
  • 19.8.Comments and Research Needs
  • 20. Chromatographic Reactors / Motoaki Kawase
  • 20.1. Introduction
  • 20.2. Concept and Types
  • 20.3. General Models
  • 20.4. Cyclic Steady State
  • 20.5. Pulse Chromatographic Reactor
  • 20.6. Countercurrent Moving Bed Chromatographic Reactor
  • 20.7. Continuous Rotating Annular Chromatographic Reactor
  • 20.8. Stepwise, Countercurrent Multi-Stage Fluidized Bed Chromatographic Reactor
  • 20.9. Fixed Bed Chromatographic Reactor With Flow Direction Switching
  • 20.10. Extractive Reactor Systems
  • 20.11. Centrifugal Partition Chromatographic Reactor
  • 21. Simulated Moving Bed Chromatographic Reactors / Peter Lewis Silveston
  • 21.1. Operation and Application
  • 21.2. Modeling and Simulation
  • 21.3. Experimental Studies
  • 21.4. Other Reactor Applications of Simulated Moving Beds
  • 22. Pressure and Temperature Swing Reactors / Peter Lewis Silveston
  • 22.1. Concepts and Types of Pressure Swing Reactors
  • 22.2. Models for Swing Reactors
  • 22.3.Computational Considerations
  • 22.4. Simulations of Pressure Swing Systems
  • 22.5. Experimental Studies
  • 22.6. Temperature Swing Reactors
  • 22.7. Simulation of Temperature Swing Systems
  • 22.8. Temperature Swing Reactor Networks
  • 22.9. Experimental
  • 22.10.Combined Pressure and Temperature Swing Reactors
  • 22.11. Overview and Assessment
  • 23. New Directions
  • Research and Development Challenges / Peter Lewis Silveston
  • 23.1. Challenges
  • 23.2. New Directions.
This comprehensive review, prepared by 24 experts, many of whom are pioneers of the subject, brings together in one place over 40 years of research in this unique publication. This book will assist R & D specialists, research chemists, chemical engineers or process managers harnessing periodic operations to improve their process plant performance. Periodic Operation of Reactors covers process fundamentals, research equipment and methods and provides "the state of the art" for the periodic operation of many industrially important catalytic reactions. Emphasis is on experimental results, modeling and simulation. Combined reaction and separation are dealt with, including simulated moving bed chromatographic, pressure and temperature swing and circulating bed reactors. Thus, Periodic Operation of Reactors offers readers a single comprehensive source for the broad and diverse new subject. This exciting new publication is a "must have" for any professional working in chemical process research and development. Key features: Provides the only comprehensive reference on the fundamentals, development and applications of periodic reactor operation, using contributions from the research pioneers. This authoritative reference focuses on applications helping readers to use this book to deliver results in their own work. Complete literature references will be an invaluable assistance for readers collecting data and models from past research. About the editors: Peter L. Silveston is a Distinguished Professor Emeritus at the University of Waterloo in Canada. Professor Silveston has authored or co-authored three previous books on reactor engineering topics as well as close to 300 research publications. He is a graduate of M.I.T. and the Technical University of Munich (Germany). Robert Hudgins is a Professor Emeritus at the University of Waterloo. His research interests are reactor engineering, specifically periodic operation of catalytic reactors, and he has about 250 research publications. He is a graduate of the University of Toronto and Princeton University. FEATURE: A comprehensive reference on the fundamentals, development and applications of periodic operation. BENEFIT: Provides readers with a single comprehensive source for this extremely broad and diverse subject FEATURE: Contributors and editors include the pioneers of the subject as well as the leading researchers in the field. BENEFIT: Has the authority and experience of the leading players in the field FEATURE: Covers both fundamentals and the state of the art for each operation scenario, and brings all types of periodic operation together in a single volume. BENEFIT: Provides a succinct reference to the most important applications in the filed, allowing readers to understand how to apply techniques or technologies to their own situation FEATURE: Discussion is focused on experimental results rather than theoretical ones; provides a rich source of experimental data, plus process models. BENEFIT: Applied approach that is geared helping practicing engineers and researchers solve problems FEATURE: Accompanying website with modelling data BENEFIT: Engineers can engage with experimental and actual performance data.
Book
1 online resource.
We studied the reaction of phenyl radicals (C6H5) with propylene (C3H6) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 1,200-1,500 K). The reaction products were probed in a supersonic beam by utilizing tunable vacuum ultraviolet (VUV) radiation from the Advanced Light Source and recording the photoionization efficiency (PIE) curves at mass-to-charge ratios of m/z = 118 (C9H10+) and m/z = 104 (C8H8+). Our results suggest that the methyl and atomic hydrogen losses are the two major reaction pathways with branching ratios of 86 10 percent and 14 10 percent. The isomer distributions were probed by fitting the recorded PIE curves with a linear combination of the PIE curves of the individual C9H10 and C8H8 isomers. Styrene (C6H5C2H3) was found to be the exclusive product contributing to m/z = 104 (C8H8+), whereas 3-phenylpropene, cis-1-phenylpropene, and 2-phenylpropene with branching ratios of 96 4 percent, 3 3 percent, and 1 1 percent could account for signal at m/z = 118 (C9H10+). Although searched for carefully, no evidence of the bicyclic indane molecule could be provided. The reaction mechanisms and branching ratios are explained in terms of electronic structure calculations nicely agreeing with a recent crossed molecular beam study on this system.
We studied the reaction of phenyl radicals (C6H5) with propylene (C3H6) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 1,200-1,500 K). The reaction products were probed in a supersonic beam by utilizing tunable vacuum ultraviolet (VUV) radiation from the Advanced Light Source and recording the photoionization efficiency (PIE) curves at mass-to-charge ratios of m/z = 118 (C9H10+) and m/z = 104 (C8H8+). Our results suggest that the methyl and atomic hydrogen losses are the two major reaction pathways with branching ratios of 86 10 percent and 14 10 percent. The isomer distributions were probed by fitting the recorded PIE curves with a linear combination of the PIE curves of the individual C9H10 and C8H8 isomers. Styrene (C6H5C2H3) was found to be the exclusive product contributing to m/z = 104 (C8H8+), whereas 3-phenylpropene, cis-1-phenylpropene, and 2-phenylpropene with branching ratios of 96 4 percent, 3 3 percent, and 1 1 percent could account for signal at m/z = 118 (C9H10+). Although searched for carefully, no evidence of the bicyclic indane molecule could be provided. The reaction mechanisms and branching ratios are explained in terms of electronic structure calculations nicely agreeing with a recent crossed molecular beam study on this system.
Book
1 online resource.
This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in other technologies.
This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in other technologies.
Book
1 online resource (190 p. ) : digital, PDF file.
A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.
A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

Looking for different results?

Modify your search: Remove limit(s) Search all fields

Search elsewhere: Search WorldCat Search library website